Learn R Programming

fsemipar (version 1.1.1)

fsemipar-package: tools:::Rd_package_title("fsemipar")

Description

This package is dedicated to the estimation and simultaneous estimation and variable selection in several functional semiparametric models with scalar response. These include the functional single-index model, the semi-functional partial linear model, and the semi-functional partial linear single-index model. Additionally, it encompasses algorithms for addressing estimation and variable selection in linear models and bi-functional partial linear models when the scalar covariates with linear effects are derived from the discretisation of a curve. Furthermore, the package offers routines for kernel- and kNN-based estimation using Nadaraya-Watson weights in models with a nonparametric or semiparametric component. It also includes S3 methods (predict, plot, print, summary) to facilitate statistical analysis across all the considered models and estimation procedures.

Arguments

Author

tools:::Rd_package_author("fsemipar")

Maintainer: tools:::Rd_package_maintainer("fsemipar")

Details

The package can be divided into several thematic sections:

  1. Estimation of the functional single-index model.

    • projec.

    • semimetric.projec.

    • fsim.kernel.fit and fsim.kNN.fit.

    • fsim.kernel.fit.optim and fsim.kNN.fit.optim

    • fsim.kernel.test and fsim.kNN.test.

    • predict, plot, summary and print methods for fsim.kernel and fsim.kNN classes.

  2. Simultaneous estimation and variable selection in linear and semi-functional partial linear models.

    1. Linear model

      • lm.pels.fit.

      • predict, summary, plot and print methods for lm.pels class.

    2. Semi-functional partial linear model.

      • sfpl.kernel.fit and sfpl.kNN.fit.

      • predict, summary, plot and print methods for sfpl.kernel and sfpl.kNN classes.

    3. Semi-functional partial linear single-index model.

      • sfplsim.kernel.fit and sfplsim.kNN.fit.

      • predict, summary, plot and print methods for sfplsim.kernel and sfplsim.kNN classes.

  3. Algorithms for impact point selection in models with covariates derived from the discretisation of a curve.

    1. Linear model

      • PVS.fit.

      • predict, summary, plot and print methods for PVS class.

    2. Bi-functional partial linear model.

      • PVS.kernel.fit and PVS.kNN.fit.

      • predict, summary, plot and print methods for PVS.kernel and PVS.kNN classes.

    3. Bi-functional partial linear single-index model.

      • FASSMR.kernel.fit and FASSMR.kNN.fit.

      • IASSMR.kernel.fit and IASSMR.kNN.fit.

      • predict, summary, plot and print methods for FASSMR.kernel, FASSMR.kNN, IASSMR.kernel and IASSMR.kNN classes.

  4. Two datasets: Tecator and Sugar.

References

Aneiros, G. and Vieu, P., (2014) Variable selection in infinite-dimensional problems, Statistics and Probability Letters, 94, 12--20. tools:::Rd_expr_doi("https://doi.org/10.1016/j.spl.2014.06.025").

Aneiros, G., Ferraty, F., and Vieu, P., (2015) Variable selection in partial linear regression with functional covariate, Statistics, 49 1322--1347, tools:::Rd_expr_doi("https://doi.org/10.1080/02331888.2014.998675").

Aneiros, G., and Vieu, P., (2015) Partial linear modelling with multi-functional covariates. Computational Statistics, 30, 647--671. tools:::Rd_expr_doi("https://doi.org/10.1007/s00180-015-0568-8").

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in functional single-index regression, Journal of Nonparametric Statistics, 31(2), 364--392, tools:::Rd_expr_doi("https://doi.org/10.1080/10485252.2019.1567726").

Novo, S., Aneiros, G., and Vieu, P., (2021) Sparse semiparametric regression when predictors are mixture of functional and high-dimensional variables, TEST, 30, 481--504, tools:::Rd_expr_doi("https://doi.org/10.1007/s11749-020-00728-w").

Novo, S., Aneiros, G., and Vieu, P., (2021) A kNN procedure in semiparametric functional data analysis, Statistics and Probability Letters, 171, 109028, tools:::Rd_expr_doi("https://doi.org/10.1016/j.spl.2020.109028").

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semiparametric bi-functional regression, Australian and New Zealand Journal of Statistics, 63, 606--638, tools:::Rd_expr_doi("https://doi.org/10.1111/anzs.12355").