# \donttest{
data(Sugar)
y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240
#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]
#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]
train<-1:216
test<-217:266
#Fit
fit.kernel<- PVS.kernel.fit(x=x.sug[train,],z=z.sug[train,],
y=y.sug[train],train.1=1:108,train.2=109:216,
lambda.min.h=0.03,lambda.min.l=0.03,
max.q.h=0.35, nknot=20,criterion="BIC",
max.iter=5000)
fit.kNN<- PVS.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
train.1=1:108,train.2=109:216,lambda.min.h=0.07,
lambda.min.l=0.07, nknot=20,criterion="BIC",
max.iter=5000)
#Preditions
predict(fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
predict(fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
# }
Run the code above in your browser using DataLab