# \donttest{
data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra2
z1<-Tecator$protein
z2<-Tecator$moisture
#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215
#SFPLSIM fit. Convergence errors for some theta are obtained.
s.fit.kernel<-sfplsim.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],
max.q.h=0.35,lambda.min.l=0.01, factor.pn=2, nknot.theta=4,
criterion="BIC", range.grid=c(850,1050),
nknot=20, max.iter=5000)
s.fit.kNN<-sfplsim.kNN.fit(y=y[train],x=X[train,], z=z.com[train,],
max.knn=20,lambda.min.l=0.01, factor.pn=2, nknot.theta=4,
criterion="BIC",range.grid=c(850,1050),
nknot=20, max.iter=5000)
predict(s.fit.kernel,newdata.x=X[test,],newdata.z=z.com[test,],
y.test=y[test],option=2)
predict(s.fit.kNN,newdata.x=X[test,],newdata.z=z.com[test,],
y.test=y[test],option=2)
# }
# \donttest{
data(Sugar)
y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240
#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]
#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]
train<-1:216
test<-217:266
m.fit.kernel <- FASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,],
y=y.sug[train], nknot.theta=2,
lambda.min.l=0.03, max.q.h=0.35,num.h = 10,
nknot=20,criterion="BIC", max.iter=5000)
m.fit.kNN<- FASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
nknot.theta=2, lambda.min.l=0.03,
max.knn=20,nknot=20,criterion="BIC",max.iter=5000)
predict(m.fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],
y.test=y.sug[test],option=2)
predict(m.fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],
y.test=y.sug[test],option=2)
# }
Run the code above in your browser using DataLab