summary
and print
functions for PVS.kernel.fit
and PVS.kNN.fit
.
# S3 method for PVS.kernel
print(x, ...)
# S3 method for PVS.kNN
print(x, ...)
# S3 method for PVS.kernel
summary(object, ...)
# S3 method for PVS.kNN
summary(object, ...)
The matched call.
The optimal value of the tunning parameter (h.opt
or k.opt
).
The optimal initial number of covariates to build the reduced model (w.opt
).
The estimated vector of linear coefficients (beta.est
).
The number of non-zero components in beta.est
.
The indexes of the non-zero components in beta.est
.
The optimal value of the penalisation parameter (lambda.opt
).
The optimal value of the criterion function, i.e. the value obtained with w.opt
, lambda.opt
, vn.opt
and h.opt
/k.opt
Minimum value of the penalised least-squares function. That is, the value obtained using beta.est
and lambda.opt
.
The penalty function used.
The criterion used to select the number of covariates employed to construct the reduced model, the tuning parameter, the penalisation parameter and vn
.
Output of the PVS.kernel.fit
or PVS.kNN.fit
functions (i.e. an object of the class PVS.kernel
or PVS.kNN
).
Further arguments.
Output of the PVS.kernel.fit
or PVS.kNN.fit
functions (i.e. an object of the class PVS.kernel
or PVS.kNN
).
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
PVS.kernel.fit
and PVS.kNN.fit
.