Densities or raw data matrix of dimension n by p, where n denotes sample size and p denotes dimensionality
normalization
If a standardization should be performed?
h_scale
Scaling parameter in the kernel density estimator
m
Grid point within the data range
band_choice
Selection of optimal bandwidth
kernel
Type of kernel functions
varprop
Proportion of variance explained
fmethod
Univariate time series forecasting method
Author
Han Lin Shang
Details
1) Compute the geometric mean function
2) Apply the centered log-ratio transformation
3) Apply FPCA to the transformed data
4) Forecast principal component scores
5) Transform forecasts back to the compositional data
6) Add back the geometric means, to obtain the forecasts of the density function
References
Boucher, M.-P. B., Canudas-Romo, V., Oeppen, J. and Vaupel, J. W. (2017) `Coherent forecasts of mortality with compositional data analysis', Demographic Research, 37, 527-566.
Egozcue, J. J., Diaz-Barrero, J. L. and Pawlowsky-Glahn, V. (2006) `Hilbert space of probability density functions based on Aitchison geometry', Acta Mathematica Sinica, 22, 1175-1182.