Learn R Programming

ftsa (version 6.4)

GAEVforecast: Fit a generalized additive extreme value model to the functional data with given basis numbers

Description

One-step-ahead forecast for any given quantile(s) of functional time sereies of extreme values using a generalized additive extreme value (GAEV) model.

Usage

GAEVforecast(data, q, d.loc.max = 10, d.logscale.max = 10)

Value

kdf.location

the optimal number of basis functions considered for the location parameter

kdf.logscale

the optimal number of basis functions considered for the (log-)scale parameter

basis.location

the basis functions for the location parameter

basis.logscale

the basis functions for the (log-)scale parameter

para.location.pred

the predicted location function

para.scale.pred

the predicted scale function

para.shape.pred

the predicted shape parameter

density.pred

the prediced density function(s) for the given quantile(s)

Arguments

data

a n by p data matrix, where n denotes the number of functional objects and p denotes the number of realizations on each functional object

q

a required scalar or vector of GEV quantiles that are of forecasting interest

d.loc.max

the maximum number of basis functions considered for the location parameter

d.logscale.max

the maximum number of basis functions considered for the (log-)scale parameter

Author

Ruofan Xu and Han Lin Shang

Details

For the functional time seres \(\{X_t(u),t=1,...,T,u\in \mathcal{I}\}\), the GAEV model is given as $$ X_{t}(u) ~ GEV[\mu_{t}(u),\sigma_t(u),\xi_t], $$ where $$ \mu_t(u) = \beta^{(\mu)}_{t,0} + \sum_{i=1}^{d_1}\beta^{(\mu)}_{t,i}b^{(\mu)}_{i}(u), $$ $$ \ln(\sigma_t(u)) = \beta^{(\sigma)}_{t,0} + \sum_{i=1}^{d_2}\beta^{(\sigma)}_{t,i}b^{(\sigma)}_{i}(u), \xi_t \in [0,\infty), $$ where \(d_{j},j=1,2\) are positive integers of basis numbers, \(\{b^{(\mu)}_{i}(u),i=1,\dots,d_{1}\}\) and \(\{b^{(\sigma)}_{i}(u),i=1,\dots,d_{2}\}\) are the cubic regression spline basis functions.

The optimal number of basis functions \((d_1,d_2)\) are chosen by minimizing the Kullback-Leibler divergence on the test set using a leave-one-out cross-validation technique.

The one-step-ahead forecast of the joint coefficients \((\widehat{\beta^{(\mu)}}_{T+1,i},\widehat{\beta^{(\sigma)}}_{T+1,j},\widehat{\xi}_{T+1},i=0,...,d_1,j=0,...,d_2)\) are produced using a vector autoregressive model, whose order is selected via the corrected Akaike information criterion. Then the one-step-ahead forecast of the GEV parameter \((\widehat{\mu}_{T+1}(u),\widehat{\sigma}_{T+1}(u),\widehat{\xi}_{T+1})\) can be computed accordingly.

The one-step-ahead forecast for the \(\tau\)-th quantile of the extreme values \(\widehat{X}_{T+1}(u)\) is computed by $$ Q_{\tau}(u|\widehat{\mu}_{T+1},\widehat{\sigma}_{T+1},\widehat{\xi}_{T+1})$$ = $$ \widehat{\mu}_{T+1}(u) + \frac{\widehat{\sigma}_{T+1}(u) \big[(-\ln(\tau))^{-\widehat{\xi}_{T+1}}-1\big]}{\widehat{\xi}_{T+1}}, \xi > 0, \tau\in [0,1);\ \xi < 0, \tau\in (0,1], \\ \widehat{\mu}_{T+1}(u) - \widehat{\sigma}_{T+1}(u) \cdot \ln[-\ln\big(\tau)], \xi=0, \tau \in (0,1). $$

References

Shang, H. L. and Xu, R. (2021) `Functional time series forecasting of extreme values', Communications in Statistics Case Studies Data Analysis and Applications, in press.

Examples

Run this code
if (FALSE) {
library(evd)
data = matrix(rgev(1000),ncol=50) 
GAEVforecast(data = data, q = c(0.02,0.7), d.loc.max = 5, d.logscale.max = 5)
}

Run the code above in your browser using DataLab