Implementation of a dynamic functional principal component analysis to forecast densities.
Horta_Ziegelmann_FPCA(data, gridpoints, h_scale = 1, p = 5, m = 5001,
kernel = c("gaussian", "epanechnikov"), band_choice = c("Silverman", "DPI"),
VAR_type = "both", lag_maximum = 6, no_boot = 1000, alpha_val = 0.1,
ncomp_select = "TRUE", D_val = 10)
Forecast density
Grid points
Distance between two successive grid points
Mean of density functions
Estimated functional principal components
Estimated principal component scores
Forecast principal component scores
Selected number of components
p-values associated with the selected functional principal components
Estimated eigenvalues
Densities or raw data matrix of dimension N by p, where N denotes sample size and p denotes dimensionality
Grid points
Scaling parameter in the kernel density estimator
Number of backward parameters
Number of grid points
Type of kernel function
Selection of optimal bandwidth
Type of vector autoregressive process
A tuning parameter in the super_fun
function
A tuning parameter in the super_fun
function
A tuning parameter in the super_fun
function
A tuning parameter in the super_fun
function
A tuning parameter in the super_fun
function
Han Lin Shang
1) Compute a kernel covariance function 2) Via eigen-decomposition, a density can be decomposed into a set of functional principal components and their associated scores 3) Fit a vector autoregressive model to the scores with the order selected by Akaike information criterion 4) By multiplying the estimated functional principal components with the forecast scores, obtain forecast densities 5) Since forecast densities may neither be non-negative nor sum to one, normalize the forecast densities accordingly
Horta, E. and Ziegelmann, F. (2018) `Dynamics of financial returns densities: A functional approach applied to the Bovespa intraday index', International Journal of Forecasting, 34, 75-88.
Bathia, N., Yao, Q. and Ziegelmann, F. (2010) `Identifying the finite dimensionality of curve time series', The Annals of Statistics, 38, 3353-3386.
CoDa_FPCA
, LQDT_FPCA
, skew_t_fun
if (FALSE) {
Horta_Ziegelmann_FPCA(data = DJI_return, kernel = "epanechnikov",
band_choice = "DPI", ncomp_select = "FALSE")
}
Run the code above in your browser using DataLab