Probability density function, cumulative distribution function and quantile density function are three characterizations of a distribution. Of these three, quantile density function is the least constrained. The only constrain is nonnegative. By taking a log transformation, there is no constrain.
LQDT_FPCA(data, gridpoints, h_scale = 1, M = 3001, m = 5001, lag_maximum = 4,
no_boot = 1000, alpha_val = 0.1, p = 5,
band_choice = c("Silverman", "DPI"),
kernel = c("gaussian", "epanechnikov"),
forecasting_method = c("uni", "multi"),
varprop = 0.85, fmethod, VAR_type)
L2 norm difference between reconstructed and actual densities
Uniform Metric excluding missing boundary values (due to boundary cutoff)
Reconstructed densities
Actual densities
Forecast densities
Assess loss of mass incurred by boundary cutoff
m number of grid points
Densities or raw data matrix of dimension N by p, where N denotes sample size and p denotes dimensionality
Grid points
Scaling parameter in the kernel density estimator
Number of grid points between 0 and 1
Number of grid points within the data range
A tuning parameter in the super_fun
function
A tuning parameter in the super_fun
function
A tuning parameter in the super_fun
function
Number of backward parameters
Selection of optimal bandwidth
Type of kernel function
Univariate or multivariate time series forecasting method
Proportion of variance explained
If forecasting_method = "uni"
, specify a particular forecasting method
If forecasting_method = "multi"
, specify a particular type of vector autoregressive model
Han Lin Shang
1) Transform the densities f into log quantile densities Y and c specifying the value of the cdf at 0 for the target density f. 2) Compute the predictions for future log quantile density and c value. 3) Transform the forecasts in Step 2) into the predicted density f.
Petersen, A. and Muller, H.-G. (2016) `Functional data analysis for density functions by transformation to a Hilbert space', The Annals of Statistics, 44, 183-218.
Jones, M. C. (1992) `Estimating densities, quantiles, quantile densities and density quantiles', Annals of the Institute of Statistical Mathematics, 44, 721-727.
CoDa_FPCA
, Horta_Ziegelmann_FPCA
, skew_t_fun
if (FALSE) {
LQDT_FPCA(data = DJI_return, band_choice = "DPI", kernel = "epanechnikov",
forecasting_method = "uni", fmethod = "ets")
}
Run the code above in your browser using DataLab