oldPar <- par(no.readonly = TRUE)
# Use Legendre polynomials as eigenfunctions and a linear eigenvalue decrease
test <- simFunData(seq(0,1,0.01), M = 10, eFunType = "Poly", eValType = "linear", N = 10)
plot(test$trueFuns, main = "True Eigenfunctions")
plot(test$simData, main = "Simulated Data")
# The use of ignoreDeg for eFunType = "PolyHigh"
test <- simFunData(seq(0,1,0.01), M = 4, eFunType = "Poly", eValType = "linear", N = 10)
test_noConst <- simFunData(seq(0,1,0.01), M = 4, eFunType = "PolyHigh",
ignoreDeg = 1, eValType = "linear", N = 10)
test_noLinear <- simFunData(seq(0,1,0.01), M = 4, eFunType = "PolyHigh",
ignoreDeg = 2, eValType = "linear", N = 10)
test_noBoth <- simFunData(seq(0,1,0.01), M = 4, eFunType = "PolyHigh",
ignoreDeg = 1:2, eValType = "linear", N = 10)
par(mfrow = c(2,2))
plot(test$trueFuns, main = "Standard polynomial basis (M = 4)")
plot(test_noConst$trueFuns, main = "No constant basis function")
plot(test_noLinear$trueFuns, main = "No linear basis function")
plot(test_noBoth$trueFuns, main = "Neither linear nor constant basis function")
# Higher-dimensional domains
simImages <- simFunData(argvals = list(seq(0,1,0.01), seq(-pi/2, pi/2, 0.02)),
M = c(5,4), eFunType = c("Wiener","Fourier"), eValType = "linear", N = 4)
for(i in 1:4)
plot(simImages$simData, obs = i, main = paste("Observation", i))
par(oldPar)
Run the code above in your browser using DataLab