## set up a 'monte' run for the Fisher iris data
sk.lst <- list(c(0.120, 0.041, 0.106, 1.254), #
c(0.105, -0.363, -0.607, -0.031),
c(0.118, 0.366, 0.549, -0.129) )
kt.lst <- list(c(-0.253, 0.955, 1.022, 1.719),
c(-0.533,-0.366, 0.048, -0.410),
c( 0.033, 0.706, -0.154, -0.602))
cormat <- lapply(split(iris[,1:4],iris[,5]), cor)
my.iris <- monte(seed = 123, nvar = 4, nclus = 3, cor.list = cormat,
clus.size = c(50, 50, 50),
eta2 = c(0.619, 0.401, 0.941, 0.929),
random.cor = FALSE,
skew.list = sk.lst, kurt.list = kt.lst,
secor = .3,
compactness = c(1, 1, 1),
sortMeans = TRUE)
summary(my.iris)
Run the code above in your browser using DataLab