##### Model 1 with normal errors, by Horvath et al. (2017)
T <- 100 #length of time series
X <- rnorm(T, mean = 1, sd = 1)
E <- rnorm(T, mean = 0, sd = 1)
SizeOfChange <- 1
TimeOfChange <- 50
Y <- c(1 * X[1:TimeOfChange] + E[1:TimeOfChange],
(1 + SizeOfChange)*X[(TimeOfChange + 1):T] + E[(TimeOfChange + 1):T])
ehat <- lm(Y ~ X)$resid
mcusum_test(ehat, k = c(30, 50, 70))
#Same, but with bootstrapped innovations obtained from a kernel smoothed distribution:
mcusum_test(ehat, k = c(30, 50, 70), ksm = TRUE)
Run the code above in your browser using DataLab