data(rotif.env)
names(rotif.env)
# you can calculate similarity between binary species occurrence patterns:
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Jaccard")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Sorensen")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Simpson")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Baroni")
# or you can model environmental favourability for these species
# and calculate fuzzy similarity between their environmental predictions
# which goes beyond the strict coincidence of their occurrence records:
fav <- multGLM(rotif.env, sp.cols = 18:19, var.cols = 5:17, step = TRUE,
FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $ predictions
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Jaccard")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Sorensen")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Simpson")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Baroni")
Run the code above in your browser using DataLab