# NOT RUN {
# we save the names of the mixture variables in the variable "toxic_chems"
toxic_chems = c("log_LBX074LA", "log_LBX099LA", "log_LBX105LA", "log_LBX118LA",
"log_LBX138LA", "log_LBX153LA", "log_LBX156LA", "log_LBX157LA", "log_LBX167LA",
"log_LBX170LA", "log_LBX180LA", "log_LBX187LA", "log_LBX189LA", "log_LBX194LA",
"log_LBX196LA", "log_LBX199LA", "log_LBXD01LA", "log_LBXD02LA", "log_LBXD03LA",
"log_LBXD04LA", "log_LBXD05LA", "log_LBXD07LA", "log_LBXF01LA", "log_LBXF02LA",
"log_LBXF03LA", "log_LBXF04LA", "log_LBXF05LA", "log_LBXF06LA", "log_LBXF07LA",
"log_LBXF08LA", "log_LBXF09LA", "log_LBXPCBLA", "log_LBXTCDLA", "log_LBXHXCLA")
# To run a linear model and save the results in the variable "results". This linear model
# (family="Gaussian") will rank/standardize variables in quartiles (q = 4), perform a
# 40/60 split of the data for training/validation (validation = 0.6), and estimate weights
# over 5 bootstrap samples (b = 3). Weights will be derived from mixture effect
# parameters that are positive (b1_pos = TRUE). A unique seed was specified (seed = 2016) so
# this model will be reproducible, and plots describing the variable weights and linear
# relationship will be generated as output (plots = TRUE). In the end tables describing the
# weights values and the model parameters with the respectively statistics are generated in
# the viewer window
results = gwqs(y ~ NULL, mix_name = toxic_chems, data = wqs_data, q = 4, validation = 0.6,
b = 3, b1_pos = TRUE, b1_constr = FALSE, family = "gaussian", seed = 2016,
wqs2 = FALSE, plots = TRUE, tables = TRUE)
# to test the significance of the covariates
summary(results$fit)
# }
Run the code above in your browser using DataLab