# NOT RUN {
require(copula)
require(mgcv)
set.seed(0)
## Simulation parameters (sample size, correlation between covariates,
## Gaussian copula family)
n <- 5e2
rho <- 0.5
fam <- 1
## A calibration surface depending on three variables
eta0 <- 1
calib.surf <- list(
calib.quad <- function(t, Ti = 0, Tf = 1, b = 8) {
Tm <- (Tf - Ti) / 2
a <- -(b / 3) * (Tf^2 - 3 * Tf * Tm + 3 * Tm^2)
return(a + b * (t - Tm)^2)
},
calib.sin <- function(t, Ti = 0, Tf = 1, b = 1, f = 1) {
a <- b * (1 - 2 * Tf * pi / (f * Tf * pi +
cos(2 * f * pi * (Tf - Ti))
- cos(2 * f * pi * Ti)))
return((a + b) / 2 + (b - a) * sin(2 * f * pi * (t - Ti)) / 2)
},
calib.exp <- function(t, Ti = 0, Tf = 1, b = 2, s = Tf / 8) {
Tm <- (Tf - Ti) / 2
a <- (b * s * sqrt(2 * pi) / Tf) * (pnorm(0, Tm, s) - pnorm(Tf, Tm, s))
return(a + b * exp(-(t - Tm)^2 / (2 * s^2)))
}
)
## Display the calibration surface
par(mfrow = c(1, 3), pty = "s", mar = c(1, 1, 4, 1))
u <- seq(0, 1, length.out = 100)
sel <- matrix(c(1, 1, 2, 2, 3, 3), ncol = 2)
jet.colors <- colorRamp(c(
"#00007F", "blue", "#007FFF", "cyan", "#7FFF7F",
"yellow", "#FF7F00", "red", "#7F0000"
))
jet <- function(x) rgb(jet.colors(exp(x / 3) / (1 + exp(x / 3))),
maxColorValue = 255
)
for (k in 1:3) {
tmp <- outer(u, u, function(x, y)
eta0 + calib.surf[[sel[k, 1]]](x) + calib.surf[[sel[k, 2]]](y))
persp(u, u, tmp,
border = NA, theta = 60, phi = 30, zlab = "",
col = matrix(jet(tmp), nrow = 100),
xlab = paste("X", sel[k, 1], sep = ""),
ylab = paste("X", sel[k, 2], sep = ""),
main = paste("eta0+f", sel[k, 1],
"(X", sel[k, 1], ") +f", sel[k, 2],
"(X", sel[k, 2], ")",
sep = ""
)
)
}
## 3-dimensional matrix X of covariates
covariates.distr <- mvdc(normalCopula(rho, dim = 3),
c("unif"), list(list(min = 0, max = 1)),
marginsIdentical = TRUE
)
X <- rMvdc(n, covariates.distr)
## U in [0,1]x[0,1] with copula parameter depending on X
U <- condBiCopSim(fam, function(x1, x2, x3) {
eta0 + sum(mapply(function(f, x)
f(x), calib.surf, c(x1, x2, x3)))
}, X[, 1:3], par2 = 6, return.par = TRUE)
## Merge U and X
data <- data.frame(U$data, X)
names(data) <- c(paste("u", 1:2, sep = ""), paste("x", 1:3, sep = ""))
## Display the data
dev.off()
plot(data[, "u1"], data[, "u2"], xlab = "U1", ylab = "U2")
## Model fit with a basis size (arguably) too small
## and unpenalized cubic spines
pen <- FALSE
basis0 <- c(3, 4, 4)
formula <- ~ s(x1, k = basis0[1], bs = "cr", fx = !pen) +
s(x2, k = basis0[2], bs = "cr", fx = !pen) +
s(x3, k = basis0[3], bs = "cr", fx = !pen)
system.time(fit0 <- gamBiCopFit(data, formula, fam))
## Model fit with a better basis size and penalized cubic splines (via min GCV)
pen <- TRUE
basis1 <- c(3, 10, 10)
formula <- ~ s(x1, k = basis1[1], bs = "cr", fx = !pen) +
s(x2, k = basis1[2], bs = "cr", fx = !pen) +
s(x3, k = basis1[3], bs = "cr", fx = !pen)
system.time(fit1 <- gamBiCopFit(data, formula, fam))
## Extract the gamBiCop objects and show various methods
(res <- sapply(list(fit0, fit1), function(fit) {
fit$res
}))
metds <- list("logLik" = logLik, "AIC" = AIC, "BIC" = BIC, "EDF" = EDF)
lapply(res, function(x) sapply(metds, function(f) f(x)))
## Comparison between fitted, true smooth and spline approximation for each
## true smooth function for the two basis sizes
fitted <- lapply(res, function(x) gamBiCopPredict(x, data.frame(x1 = u, x2 = u, x3 = u),
type = "terms"
)$calib)
true <- vector("list", 3)
for (i in 1:3) {
y <- eta0 + calib.surf[[i]](u)
true[[i]]$true <- y - eta0
temp <- gam(y ~ s(u, k = basis0[i], bs = "cr", fx = TRUE))
true[[i]]$approx <- predict.gam(temp, type = "terms")
temp <- gam(y ~ s(u, k = basis1[i], bs = "cr", fx = FALSE))
true[[i]]$approx2 <- predict.gam(temp, type = "terms")
}
## Display results
par(mfrow = c(1, 3), pty = "s")
yy <- range(true, fitted)
yy[1] <- yy[1] * 1.5
for (k in 1:3) {
plot(u, true[[k]]$true,
type = "l", ylim = yy,
xlab = paste("Covariate", k), ylab = paste("Smooth", k)
)
lines(u, true[[k]]$approx, col = "red", lty = 2)
lines(u, fitted[[1]][, k], col = "red")
lines(u, fitted[[2]][, k], col = "green")
lines(u, true[[k]]$approx2, col = "green", lty = 2)
legend("bottomleft",
cex = 0.6, lty = c(1, 1, 2, 1, 2),
c("True", "Fitted", "Appox 1", "Fitted 2", "Approx 2"),
col = c("black", "red", "red", "green", "green")
)
}
# }
Run the code above in your browser using DataLab