Learn R Programming

gamCopula (version 0.0-7)

gamCopula-package: Generalized Additive Models for Bivariate Conditional Dependence Structures and Vine Copulas

Description

This package implements inference and simulation tools to apply generalized additive models to bivariate dependence structures and vine copulas.

More references in Vatter and Chavez-Demoulin (2015), and Vatter and Nagler (2016).

Arguments

Details

Package: gamCopula
Type: Package
Version: 0.0-7
Date: 2020-02-05
License: GPL-3

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.

Brechmann, E. C., C. Czado, and K. Aas (2012) Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics 40 (1), 68-85.

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013) Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

Vatter, T. and V. Chavez-Demoulin (2015) Generalized Additive Models for Conditional Dependence Structures. Journal of Multivariate Analysis, 141, 147-167.

Vatter, T. and T. Nagler (2016) Generalized additive models for non-simplified pair-copula constructions. https://arxiv.org/abs/1608.01593

Wood, S.N. (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99, 673-686.

Wood, S.N. (2006) Generalized Additive Models: an introduction with R. Chapman and Hall/CRC.

See Also

The present package is heavily relying on the mgcv and VineCopula packages, as it basically extends and mix both of them.

Examples

Run this code
# NOT RUN {
##### A gamBiCop example
require(copula)
require(mgcv)
set.seed(0)

## Simulation parameters (sample size, correlation between covariates,
## Gaussian copula family)
n <- 5e2
rho <- 0.5
fam <- 1

## A calibration surface depending on three variables
eta0 <- 1
calib.surf <- list(
  calib.quad <- function(t, Ti = 0, Tf = 1, b = 8) {
    Tm <- (Tf - Ti)/2
    a <- -(b/3) * (Tf^2 - 3 * Tf * Tm + 3 * Tm^2)
  return(a + b * (t - Tm)^2)},
  calib.sin <- function(t, Ti = 0, Tf = 1, b = 1, f = 1) {
    a <- b * (1 - 2 * Tf * pi/(f * Tf * pi +
                                 cos(2 * f * pi * (Tf - Ti))
                               - cos(2 * f * pi * Ti)))
    return((a + b)/2 + (b - a) * sin(2 * f * pi * (t - Ti))/2)},
  calib.exp <- function(t, Ti = 0, Tf = 1, b = 2, s = Tf/8) {
    Tm <- (Tf - Ti)/2
    a <- (b * s * sqrt(2 * pi)/Tf) * (pnorm(0, Tm, s) - pnorm(Tf, Tm, s))
    return(a + b * exp(-(t - Tm)^2/(2 * s^2)))})

## Display the calibration surface
par(mfrow = c(1, 3), pty = "s", mar = c(1, 1, 4, 1))
u <- seq(0, 1, length.out = 100)
sel <- matrix(c(1, 1, 2, 2, 3, 3), ncol = 2)
jet.colors <- colorRamp(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", 
                          "yellow", "#FF7F00", "red", "#7F0000"))
jet <- function(x) rgb(jet.colors(exp(x/3)/(1 + exp(x/3))), 
                       maxColorValue = 255)
for (k in 1:3) {
    tmp <- outer(u, u, function(x, y) 
      eta0 + calib.surf[[sel[k,1]]](x) + calib.surf[[sel[k, 2]]](y))
    persp(u, u, tmp, border = NA, theta = 60, phi = 30, zlab = "", 
          col = matrix(jet(tmp), nrow = 100), 
          xlab = paste("X", sel[k, 1], sep = ""), 
          ylab = paste("X", sel[k,2], sep = ""), 
          main = paste("eta0+f", sel[k, 1], 
                       "(X", sel[k, 1], ") +f",sel[k, 2], 
                       "(X", sel[k, 2], ")", sep = ""))
}

## 3-dimensional matrix X of covariates
covariates.distr <- mvdc(normalCopula(rho, dim = 3),
                                 c("unif"), list(list(min = 0, max = 1)),
                                 marginsIdentical = TRUE)
X <- rMvdc(n, covariates.distr)

## U in [0,1]x[0,1] with copula parameter depending on X
U <- condBiCopSim(fam, function(x1,x2,x3) {eta0+sum(mapply(function(f,x)
  f(x), calib.surf, c(x1,x2,x3)))}, X[,1:3], par2 = 6, return.par = TRUE)

## Merge U and X
data <- data.frame(U$data,X)
names(data) <- c(paste("u",1:2,sep=""),paste("x",1:3,sep=""))

## Display the data
dev.off()
plot(data[, "u1"], data[, "u2"], xlab = "U1", ylab = "U2")

## Model fit with a basis size (arguably) too small 
## and unpenalized cubic spines
pen <- FALSE
basis0 <- c(3, 4, 4)
formula <- ~s(x1, k = basis0[1], bs = "cr", fx = !pen) + 
  s(x2, k = basis0[2], bs = "cr", fx = !pen) + 
  s(x3, k = basis0[3], bs = "cr", fx = !pen)
system.time(fit0 <- gamBiCopFit(data, formula, fam))

## Model fit with a better basis size and penalized cubic splines (via min GCV)
pen <- TRUE
basis1 <- c(3, 10, 10)
formula <- ~s(x1, k = basis1[1], bs = "cr", fx = !pen) + 
  s(x2, k = basis1[2], bs = "cr", fx = !pen) + 
  s(x3, k = basis1[3], bs = "cr", fx = !pen)
system.time(fit1 <- gamBiCopFit(data, formula, fam))

## Extract the gamBiCop objects and show various methods
(res <- sapply(list(fit0,fit1), function(fit){fit$res}))
metds <- list('logLik'=logLik,'AIC'=AIC,'BIC'=BIC,'EDF'=EDF)
lapply(res, function(x) sapply(metds, function(f) f(x)))


## Comparison between fitted, true smooth and spline approximation for each
## true smooth function for the two basis sizes
fitted <- lapply(res, function(x) gamBiCopPredict(x, data.frame(x1=u,x2=u,x3=u), 
                                               type = "terms")$calib)
true <- vector("list", 3)
for (i in 1:3) {
    y <- eta0+calib.surf[[i]](u)   
    true[[i]]$true <- y - eta0   
    temp <- gam(y ~ s(u, k = basis0[i], bs = "cr", fx = TRUE))
    true[[i]]$approx <- predict.gam(temp, type = "terms")
    temp <- gam(y ~s(u, k = basis1[i], bs = "cr", fx = FALSE))
    true[[i]]$approx2 <- predict.gam(temp, type = "terms")
}

## Display results
par(mfrow = c(1, 3), pty = "s")
yy <- range(true, fitted)
yy[1] <- yy[1] * 1.5
for(k in 1:3){
  plot(u, true[[k]]$true, type = "l", ylim = yy, 
       xlab = paste("Covariate",k), ylab = paste("Smooth",k))
  lines(u, true[[k]]$approx, col = "red", lty = 2)
  lines(u, fitted[[1]][, k], col = "red")
  lines(u, fitted[[2]][, k], col = "green")
  lines(u, true[[k]]$approx2, col = "green", lty = 2)
  legend("bottomleft", cex = 0.6, lty = c(1, 1, 2, 1, 2),
         c("True", "Fitted", "Appox 1", "Fitted 2", "Approx 2"), 
         col = c("black", "red", "red", "green", "green"))
}

##### A gamVine example
set.seed(0)

##  Simulation parameters
# Sample size
n <- 1e3
# Copula families
familyset <- c(1:2,301:304,401:404)
# Define a 4-dimensional R-vine tree structure matrix
d <- 4
Matrix <- c(2,3,4,1,0,3,4,1,0,0,4,1,0,0,0,1)
Matrix <- matrix(Matrix,d,d)
nnames <- paste("X", 1:d, sep = "")

## A function factory
eta0 <- 1
calib.surf <- list(
  calib.quad <- function(t, Ti = 0, Tf = 1, b = 8) {
    Tm <- (Tf - Ti)/2
    a <- -(b/3) * (Tf^2 - 3 * Tf * Tm + 3 * Tm^2)
    return(a + b * (t - Tm)^2)},
  calib.sin <- function(t, Ti = 0, Tf = 1, b = 1, f = 1) {
    a <- b * (1 - 2 * Tf * pi/(f * Tf * pi +
                                 cos(2 * f * pi * (Tf - Ti))
                               - cos(2 * f * pi * Ti)))
    return((a + b)/2 + (b - a) * sin(2 * f * pi * (t - Ti))/2)},
  calib.exp <- function(t, Ti = 0, Tf = 1, b = 2, s = Tf/8) {
    Tm <- (Tf - Ti)/2
    a <- (b * s * sqrt(2 * pi)/Tf) * (pnorm(0, Tm, s) - pnorm(Tf, Tm, s))
    return(a + b * exp(-(t - Tm)^2/(2 * s^2)))})

##  Create the model
# Define gam-vine model list
count <- 1
model <- vector(mode = "list", length = d*(d-1)/2)
sel <- seq(d,d^2-d, by = d)

# First tree
for (i in 1:(d-1)) {
  # Select a copula family
  family <- sample(familyset, 1)
  model[[count]]$family <- family
  
  # Use the canonical link and a randomly generated parameter 
  if (is.element(family,c(1,2))) {
    model[[count]]$par <- tanh(rnorm(1)/2)
    if (family == 2) {
      model[[count]]$par2 <- 2+exp(rnorm(1))
    }  
  } else {
    if (is.element(family,c(401:404))) {
      rr <- rnorm(1)
      model[[count]]$par <- sign(rr)*(1+abs(rr))
    } else {
      model[[count]]$par <- rnorm(1)
    }
    model[[count]]$par2 <- 0
  }
  count <- count + 1
}

# A dummy dataset
data <- data.frame(u1 = runif(1e2), u2 = runif(1e2), matrix(runif(1e2*d),1e2,d))

# Trees 2 to (d-1)
for(j in 2:(d-1)){
  for(i in 1:(d-j)){ 
    # Select a copula family
    family <- sample(familyset, 1)  
    
    # Select the conditiong set and create a model formula
    cond <- nnames[sort(Matrix[(d-j+2):d,i])]
    tmpform <- paste("~",paste(paste("s(", cond, ", k=10, bs='cr')",
                                     sep = ""), collapse=" + "))
    l <- length(cond)
    temp <- sample(3, l, replace = TRUE)
    
    # Spline approximation of the true function
    m <- 1e2
    x <- matrix(seq(0,1,length.out=m), nrow = m, ncol = 1)
    if(l != 1){  
      tmp.fct <- paste("function(x){eta0+",
                       paste(sapply(1:l, function(x) 
                         paste("calib.surf[[",temp[x],"]](x[",x,"])",
                               sep="")), collapse="+"),"}",sep="")
      tmp.fct <- eval(parse(text = tmp.fct))
      x <- eval(parse(text = paste0("expand.grid(",
                                   paste0(rep("x",l), collapse = ","),")", 
                                   collapse = "")))
      y <- apply(x,1,tmp.fct)
    }else{
      tmp.fct <- function(x) eta0+calib.surf[[temp]](x)  
      colnames(x) <- cond
      y <- tmp.fct(x)
    }
    
    # Estimate the gam model
    form <- as.formula(paste0("y", tmpform))
    dd <- data.frame(y, x)
    names(dd) <- c("y", cond)
    b <- gam(form, data = dd)
    #plot(x[,1],(y-fitted(b))/y)
    
    # Create a dummy gamBiCop object
    tmp <- gamBiCopFit(data = data, formula = form, family = 1, n.iters = 1)$res
    
    # Update the copula family and the model coefficients
    attr(tmp, "model")$coefficients <- coefficients(b)
    attr(tmp, "model")$smooth <- b$smooth
    attr(tmp, "family") <- family
    if (family == 2) {
      attr(tmp, "par2") <- 2+exp(rnorm(1))
    }
    model[[count]] <- tmp
    count <- count+1  
  } 
}

# Create the gamVineCopula object
GVC <- gamVine(Matrix=Matrix,model = model,names=nnames)
print(GVC)

# }
# NOT RUN {
## Simulate and fit the model
sim <- gamVineSimulate(n, GVC)
fitGVC <- gamVineSeqFit(sim, GVC, verbose = TRUE)
fitGVC2 <- gamVineCopSelect(sim, Matrix, verbose = TRUE)

## Plot the results
par(mfrow=c(3,4))
plot(GVC, ylim = c(-2.5,2.5))

plot(fitGVC, ylim = c(-2.5,2.5))

plot(fitGVC2, ylim = c(-2.5,2.5))
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab