tools:::Rd_package_description("gamlss.add")
tools:::Rd_package_author("gamlss.add")
Maintainer: tools:::Rd_package_maintainer("gamlss.add")
The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("gamlss.add") tools:::Rd_package_indices("gamlss.add")
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby R.A., Stasinopoulos D. M., Heller G., and De Bastiani F., (2019) Distributions for Modeling Location, Scale and Shape: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1--46, tools:::Rd_expr_doi("10.18637/jss.v023.i07")
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
Therneau T. M., Atkinson E. J. (2015) An Introduction to Recursive Partitioning Using the RPART Routines. Vignette in package rpart.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC Press.
gamlss
, gamlss.family
library(gamlss)
gn <- gamlss(R~ga(~te(Fl,A)), data=rent, family=GA)
Run the code above in your browser using DataLab