Learn R Programming

gamlss.dist (version 6.1-1)

BCCG: Box-Cox Cole and Green distribution (or Box-Cox normal) for fitting a GAMLSS

Description

The function BCCG defines the Box-Cox Cole and Green distribution (Box-Cox normal), a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dBCCG, pBCCG, qBCCG and rBCCG define the density, distribution function, quantile function and random generation for the specific parameterization of the Box-Cox Cole and Green distribution. [The function BCCGuntr() is the original version of the function suitable only for the untruncated Box-Cox Cole and Green distribution See Cole and Green (1992) and Rigby and Stasinopoulos (2003a, 2003b) for details. The function BCCGo is identical to BCCG but with log link for mu.

Usage

BCCG(mu.link = "identity", sigma.link = "log", nu.link = "identity")
BCCGo(mu.link = "log", sigma.link = "log", nu.link = "identity")
BCCGuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity")
dBCCG(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCG(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCG(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCG(n, mu = 1, sigma = 0.1, nu = 1)
dBCCGo(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCGo(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCGo(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCGo(n, mu = 1, sigma = 0.1, nu = 1)

Value

BCCG() returns a gamlss.family object which can be used to fit a Cole and Green distribution in the gamlss() function.

dBCCG() gives the density, pBCCG() gives the distribution function, qBCCG() gives the quantile function, and rBCCG()

generates random deviates.

Arguments

mu.link

Defines the mu.link, with "identity" link as the default for the mu parameter, other links are "inverse", "log" and "own"

sigma.link

Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse", "identity" and "own"

nu.link

Defines the nu.link, with "identity" link as the default for the nu parameter, other links are "inverse", "log" and "own"

x,q

vector of quantiles

mu

vector of location parameter values

sigma

vector of scale parameter values

nu

vector of skewness parameter values

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required

Author

Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou

Warning

The BCCGuntr distribution may be unsuitable for some combinations of the parameters (mainly for large \(\sigma\)) where the integrating constant is less than 0.99. A warning will be given if this is the case. The BCCG distribution is suitable for all combinations of the distributional parameters within their range [i.e. \(\mu>0\), \(\sigma>0\), \(\nu=(-\infty, +\infty)\)]

Details

The probability distribution function of the untrucated Box-Cox Cole and Green distribution, BCCGuntr, is defined as $$f(y|\mu,\sigma,\nu)=\frac{1}{\sqrt{2\pi}\sigma}\frac{y^{\nu-1}}{\mu^\nu} \exp(-\frac{z^2}{2})$$

where if \(\nu \neq 0\) then \(z=[(y/\mu)^{\nu}-1]/(\nu \sigma)\) else \(z=\log(y/\mu)/\sigma\), for \(y>0\), \(\mu>0\), \(\sigma>0\) and \(\nu=(-\infty,+\infty)\).

The Box-Cox Cole and Green distribution, BCCG, adjusts the above density \(f(y|\mu,\sigma,\nu)\) for the truncation resulting from the condition \(y>0\). See Rigby and Stasinopoulos (2003a, 2003b) or pp. 439-441 of Rigby et al. (2019) for details.

References

Cole, T. J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penalized likelihood, Statist. Med. 11, 1305--1319

Rigby, R. A. and Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. Statistics in Medicine, 23: 3053-3076.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox t distribution in GAMLSS to mode skewnees and and kurtosis. Statistical Modelling, 6(3) :209. tools:::Rd_expr_doi("10.1191/1471082X06st122oa")

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/9780429298547") An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")

(see also https://www.gamlss.com/).

See Also

gamlss.family, BCPE, BCT

Examples

Run this code
BCCG()   # gives information about the default links for the Cole and Green distribution 
# library(gamlss)
#data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCCG, data=abdom) 
#plot(h)
plot(function(x) dBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20, 
 main = "The BCCG  density mu=5,sigma=.5,nu=-1")
plot(function(x) pBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20, 
 main = "The BCCG  cdf mu=5, sigma=.5, nu=-1")

Run the code above in your browser using DataLab