Learn R Programming

gamlss.dist (version 6.1-1)

BI: Binomial distribution for fitting a GAMLSS

Description

The BI() function defines the binomial distribution, a one parameter family distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dBI, pBI, qBI and rBI define the density, distribution function, quantile function and random generation for the binomial, BI(), distribution.

Usage

BI(mu.link = "logit")
dBI(x, bd = 1, mu = 0.5, log = FALSE)
pBI(q, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qBI(p, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
rBI(n, bd = 1, mu = 0.5)

Value

returns a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Arguments

mu.link

Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

x

vector of (non-negative integer) quantiles

mu

vector of positive probabilities

bd

vector of binomial denominators

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Author

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

Details

Definition file for binomial distribution. $$f(y|\mu)=\frac{\Gamma(n+1)}{\Gamma(y+1) \Gamma{(n-y+1)}} \mu^y (1-\mu)^{(n-y)}$$ for \(y=0,1,2,...,n\) and \(0<\mu< 1\) see pp. 521-522 of Rigby et al. (2019).

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")

(see also https://www.gamlss.com/).

See Also

gamlss.family, ZABI, ZIBI

Examples

Run this code
 BI()# gives information about the default links for the Binomial distribution 
# data(aep)   
# library(gamlss)
# h<-gamlss(y~ward+loglos+year, family=BI, data=aep)  
# plot of the binomial distribution
curve(dBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rBI(1000, mu=.2, bd=10))
r <- barplot(tN, col='lightblue')

Run the code above in your browser using DataLab