The function EXP defines the exponential distribution, a one parameter distribution for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The mu
parameter represents the mean of the distribution.
The functions dEXP
, pEXP
, qEXP
and rEXP
define the density,
distribution function, quantile function and random generation for the specific parameterization
of the exponential distribution defined by function EXP.
EXP(mu.link ="log")
dEXP(x, mu = 1, log = FALSE)
pEXP(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qEXP(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
rEXP(n, mu = 1)
EXP() returns a gamlss.family object which can be used to fit an exponential distribution in the gamlss() function. dEXP() gives the density, pEXP() gives the distribution function, qEXP() gives the quantile function, and rEXP() generates random deviates.
Defines the mu.link, with "log" link as the default for the mu
parameter, other links are "inverse" and "identity"
vector of quantiles
vector of location parameter values
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
vector of probabilities
number of observations. If length(n) > 1, the length is taken to be the number required
Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan
The specific parameterization of the exponential distribution used in EXP is $$f(y|\mu)=\frac{1}{\mu} \exp\left\{-\frac{y}{\mu}\right\}$$ for y>0, \(\mu>0\) see pp. 422-23 of Rigby et al. (2019).
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family
y<-rEXP(1000,mu=1) # generates 1000 random observations
hist(y)
# library(gamlss)
# histDist(y, family=EXP)
Run the code above in your browser using DataLab