Learn R Programming

gamlss.dist (version 6.1-1)

GA: Gamma distribution for fitting a GAMLSS

Description

The function GA defines the gamma distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The parameterization used has the mean of the distribution equal to \(\mu\) and the variance equal to \(\sigma^2 \mu^2\). The functions dGA, pGA, qGA and rGA define the density, distribution function, quantile function and random generation for the specific parameterization of the gamma distribution defined by function GA.

Usage

GA(mu.link = "log", sigma.link ="log")
dGA(x, mu = 1, sigma = 1, log = FALSE) 
pGA(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGA(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rGA(n, mu = 1, sigma = 1)

Value

GA() returns a gamlss.family object which can be used to fit a gamma distribution in the gamlss() function.

dGA() gives the density, pGA() gives the distribution function, qGA() gives the quantile function, and rGA()

generates random deviates. The latest functions are based on the equivalent R functions for gamma distribution.

Arguments

mu.link

Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse", "identity" ans "own"

sigma.link

Defines the sigma.link, with "log" link as the default for the sigma parameter, other link is the "inverse", "identity" and "own"

x,q

vector of quantiles

mu

vector of location parameter values

sigma

vector of scale parameter values

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required

Author

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

Details

The specific parameterization of the gamma distribution used in GA is $$f(y|\mu,\sigma)=\frac{y^{(1/\sigma^2-1)}\exp[-y/(\sigma^2 \mu)]}{(\sigma^2 \mu)^{(1/\sigma^2)} \Gamma(1/\sigma^2)}$$ for \(y>0\), \(\mu>0\) and \(\sigma>0\), see pp. 423-424 of Rigby et al. (2019).

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")

(see also https://www.gamlss.com/).

See Also

gamlss.family

Examples

Run this code
GA()# gives information about the default links for the gamma distribution      
# dat<-rgamma(100, shape=1, scale=10) # generates 100 random observations 
# fit a gamlss model
# gamlss(dat~1,family=GA) 
# fits a constant for each parameter mu and sigma of the gamma distribution
newdata<-rGA(1000,mu=1,sigma=1) # generates 1000 random observations
hist(newdata) 
rm(dat,newdata)

Run the code above in your browser using DataLab