The function GIG defines the generalized inverse gaussian distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions DIG
, pGIG
, GIG
and rGIG
define the density,
distribution function, quantile function and random generation for the specific parameterization
of the generalized inverse gaussian distribution defined by function GIG.
GIG(mu.link = "log", sigma.link = "log",
nu.link = "identity")
dGIG(x, mu=1, sigma=1, nu=1,
log = FALSE)
pGIG(q, mu=1, sigma=1, nu=1, lower.tail = TRUE,
log.p = FALSE)
qGIG(p, mu=1, sigma=1, nu=1, lower.tail = TRUE,
log.p = FALSE)
rGIG(n, mu=1, sigma=1, nu=1, ...)
GIG() returns a gamlss.family object which can be used to fit a generalized inverse gaussian distribution in the gamlss() function. DIG() gives the density, pGIG() gives the distribution function, GIG() gives the quantile function, and rGIG() generates random deviates.
Defines the mu.link, with "log" link as the default for the mu
parameter,
other links are "inverse" and "identity"
Defines the sigma.link, with "log" link as the default for the sigma
parameter,
other links are "inverse" and "identity"
Defines the nu.link, with "identity" link as the default for the nu
parameter,
other links are "inverse" and "log"
vector of quantiles
vector of location parameter values
vector of scale parameter values
vector of shape parameter values
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
vector of probabilities
number of observations. If length(n) > 1, the length is taken to be the number required
for extra arguments
Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan
The specific parameterization of the generalized inverse gaussian distribution used in GIG is $$f(y|\mu,\sigma,\nu)= (\frac{b}{\mu})^\nu \left[ \frac{y^{\nu-1}}{2 K_{\nu}(\sigma^{-2}) }\right] \exp \left[-\frac{1}{2\sigma^2} \left(\frac{b y }{\mu}+\frac{\mu}{ b y} \right)\right]$$ where \(b = \frac{K_{\nu+1}(\frac{1}{\sigma^2})}{K_{\nu}(\frac{1}{\sigma^{-2}})}\), for y>0, \(\mu>0\), \(\sigma>0\) and \(-\infty<\nu<+\infty\) see pp 445-446 of Rigby et al. (2019).
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
Jorgensen B. (1982) Statistical properties of the generalized inverse Gaussian distribution, Series: Lecture notes in statistics; 9, New York : Springer-Verlag.
(see also https://www.gamlss.com/).
gamlss.family
, IG
y<-rGIG(100,mu=1,sigma=1, nu=-0.5) # generates 1000 random observations
hist(y)
# library(gamlss)
# histDist(y, family=GIG)
Run the code above in your browser using DataLab