This function defines the generalized t distribution, a four parameter distribution,
for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
.
The functions dGT
,
pGT
, qGT
and rGT
define the density,
distribution function, quantile function and random
generation for the generalized t distribution.
GT(mu.link = "identity", sigma.link = "log", nu.link = "log",
tau.link = "log")
dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE)
pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
rGT(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
GT()
returns a gamlss.family
object which can be used to fit the GT distribution in the
gamlss()
function.
dGT()
gives the density, pGT()
gives the distribution
function, qGT()
gives the quantile function, and rGT()
generates random deviates.
Defines the mu.link
, with "identity" link as the default for the mu
parameter.
Defines the sigma.link
, with "log" link as the default for the sigma
parameter.
Defines the nu.link
, with "log" link as the default for the nu
parameter.
Defines the tau.link
, with "log" link as the default for the tau
parameter.
vector of quantiles
vector of location parameter values
vector of scale parameter values
vector of skewness nu
parameter values
vector of kurtosis tau
parameter values
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
vector of probabilities.
number of observations. If length(n) > 1
, the length is
taken to be the number required
Bob Rigby and Mikis Stasinopoulos
The qGT and rGT are slow since they are relying on optimization for finding the quantiles
The probability density function of the generalized t distribution, (GT
), , is defined as
$$f(y|\mu,\sigma\,\nu,\tau)= \tau \left\{2\sigma \nu^{1/\tau} B\left(\frac{1}{\tau},\nu\right)[1+|z|^{\tau}/\nu]^{\nu+1/\tau} \right\}^{-1}$$
where \( -\infty < y < \infty \), \(z=(y-\mu)/\sigma\) \(\mu=(-\infty,+\infty)\), \(\sigma>0\), \(\nu>0\) and \(\tau>0\), see pp. 387-388 of Rigby et al. (2019).
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
(see also https://www.gamlss.com/).
gamlss.family
, JSU
, BCT
GT() #
y<- rGT(200, mu=5, sigma=1, nu=1, tau=4)
hist(y)
curve(dGT(x, mu=5 ,sigma=2,nu=1, tau=4), -2, 11,
main = "The GT density mu=5 ,sigma=1, nu=1, tau=4")
# library(gamlss)
# m1<-gamlss(y~1, family=GT)
Run the code above in your browser using DataLab