The function IGAMMA()
defines the Inverse Gamma distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
(the mode) and sigma
. The functions dIGAMMA
, pIGAMMA
, qIGAMMA
and rIGAMMA
define the density, distribution function, quantile function and random generation for the IGAMMA
parameterization of the Inverse Gamma distribution.
IGAMMA(mu.link = "log", sigma.link="log")
dIGAMMA(x, mu = 1, sigma = .5, log = FALSE)
pIGAMMA(q, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
qIGAMMA(p, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
rIGAMMA(n, mu = 1, sigma = .5)
returns a gamlss.family object which can be used to fit an Inverse Gamma distribution in the gamlss()
function.
Defines the mu.link
, with log
link as the default for the mu parameter
Defines the sigma.link
, with log
as the default for the sigma parameter
vector of quantiles
vector of location parameter values
vector of scale parameter values
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x]
vector of probabilities
number of observations. If length(n) > 1
, the length is taken to be the number required
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.
The parameterization of the Inverse Gamma distribution in the function IGAMMA
is
$$f(y|\mu, \sigma) = \frac{\left[\mu\,(\alpha+1)\right]^{\alpha}}{\Gamma(\alpha)} \,y^{-(\alpha+1)}\, \exp{\left[-\frac{\mu\,(\alpha+1)}{y}\right]}$$
where \(\alpha = 1/(\sigma^2)\)
for \(y>0\), \(\mu>0\) and \(\sigma>0\) see pp. 424-426 of Rigby et al. (2019).
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family
, GA
par(mfrow=c(2,2))
y<-seq(0.2,20,0.2)
plot(y, dIGAMMA(y), type="l")
q <- seq(0.2, 20, 0.2)
plot(q, pIGAMMA(q), type="l")
p<-seq(0.0001,0.999,0.05)
plot(p , qIGAMMA(p), type="l")
dat <- rIGAMMA(50)
hist(dat)
#summary(gamlss(dat~1, family="IGAMMA"))
Run the code above in your browser using DataLab