The function LG
defines the logarithmic distribution, a one parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dLG
, pLG
, qLG
and rLG
define the
density, distribution function, quantile function
and random generation for the logarithmic , LG()
, distribution.
The function ZALG
defines the zero adjusted logarithmic distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZALG
, pZALG
, qZALG
and rZALG
define the
density, distribution function, quantile function
and random generation for the inflated logarithmic , ZALG()
, distribution.
LG(mu.link = "logit")
dLG(x, mu = 0.5, log = FALSE)
pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rLG(n, mu = 0.5)
ZALG(mu.link = "logit", sigma.link = "logit")
dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE)
pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZALG(n, mu = 0.5, sigma = 0.1)
The function LG
and ZALG
return a gamlss.family
object which can be used to fit a
logarithmic and a zero inflated logarithmic distributions respectively in the gamlss()
function.
defines the mu.link
, with logit
link as the default for the mu
parameter
defines the sigma.link
, with logit
link as the default for the sigma parameter which in this case
is the probability at zero.
vector of (non-negative integer)
vector of positive means
vector of probabilities at zero
vector of probabilities
vector of quantiles
number of random values to return
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
valued needed for the numerical calculation of the q-function
Mikis Stasinopoulos, Bob Rigby
The parameterization of the logarithmic distribution in the function LG
is
$$P(Y=y | \mu) = \alpha \mu^y / y$$
where
for \(y=1,2,3,...\) with \(0<\mu<1\) and $$\alpha = - [\log(1-\mu)]^{-1}.
$$
see pp 474-475 of Rigby et al. (2019).
For the zero adjusted logarithmic distribution ZALG
which is defined
for \(y=0,1,2,3,...\)
see pp 492-494 of Rigby et al. (2019).
Johnson, Norman Lloyd; Kemp, Adrienne W; Kotz, Samuel (2005). "Chapter 7: Logarithmic and Lagrangian distributions". Univariate discrete distributions (3 ed.). John Wiley & Sons. ISBN 9780471272465.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see https://www.gamlss.com/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family
, PO
, ZAP
LG()
ZAP()
# creating data and plotting them
dat <- rLG(1000, mu=.3)
r <- barplot(table(dat), col='lightblue')
dat1 <- rZALG(1000, mu=.3, sigma=.1)
r1 <- barplot(table(dat1), col='lightblue')
Run the code above in your browser using DataLab