The functions PARETO()
defines the one parameter Pareto distribution for y>1
.
The functions PARETO1()
defines the one parameter Pareto distribution for y>0
.
The functions PARETOo1()
defines the one parameter Pareto distribution for y>mu
therefor requires mu
to be fixed.
The functions PARETO2()
and PARETO2o()
define the Pareto Type 2 distribution, for y>0
, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The parameters are mu
and sigma
in both functions but the parameterasation different. The mu
is identical for both PARETO2()
and PARETO2o()
. The sigma
in PARETO2o()
is the inverse of the sigma
in codePARETO2() and coresponse to the usual parameter alpha
of the Patreto distribution. The functions dPARETO2
, pPARETO2
, qPARETO2
and rPARETO2
define the density, distribution function, quantile function and random generation for the PARETO2
parameterization of the Pareto type 2 distribution while the functions dPARETO2o
, pPARETO2o
, qPARETO2o
and rPARETO2o
define the density, distribution function, quantile function and random generation for the original PARETO2o
parameterization of the Pareto type 2 distribution
PARETO(mu.link = "log")
dPARETO(x, mu = 1, log = FALSE)
pPARETO(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qPARETO(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
rPARETO(n, mu = 1)PARETO1(mu.link = "log")
dPARETO1(x, mu = 1, log = FALSE)
pPARETO1(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qPARETO1(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
rPARETO1(n, mu = 1)
PARETO1o(mu.link = "log", sigma.link = "log")
dPARETO1o(x, mu = 1, sigma = 0.5, log = FALSE)
pPARETO1o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
qPARETO1o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
rPARETO1o(n, mu = 1, sigma = 0.5)
PARETO2(mu.link = "log", sigma.link = "log")
dPARETO2(x, mu = 1, sigma = 0.5, log = FALSE)
pPARETO2(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
qPARETO2(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
rPARETO2(n, mu = 1, sigma = 0.5)
PARETO2o(mu.link = "log", sigma.link = "log")
dPARETO2o(x, mu = 1, sigma = 0.5, log = FALSE)
pPARETO2o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
qPARETO2o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
rPARETO2o(n, mu = 1, sigma = 0.5)
returns a gamlss.family object which can be used to fit a Pareto type 2 distribution in the gamlss()
function.
Defines the mu.link
, with "`"' link sa the default for the mu parameter
Defines the sigma.link
, with "`log"' as the default for the sigma parameter
vector of quantiles
vector of location parameter values
vector of scale parameter values
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x]
vector of probabilities
number of observations. If length(n) > 1
, the length is taken to be the number required
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos
The parameterization of the one parameter Pareto distribution in the function PARETO
is:
$$f(y|\mu) = \mu y^{\mu+1}$$
for \(y>1\) and \(\mu>0\).
The parameterization of the Pareto Type 1 original distribution in the function PARETO1o
is:
$$f(y|\mu, \sigma) = \frac{\sigma \mu^{\sigma}}{y^{\sigma+1}}$$
for \(y>=0\), \(\mu>0\) and \(\sigma>0\) see pp. 430-431 of Rigby et al. (2019).
The parameterization of the Pareto Type 2 original distribution in the function PARETO2o
is:
$$f(y|\mu, \sigma) = \frac{\sigma \mu^{\sigma}}{(y+\mu)^{\sigma+1}}$$
for \(y>=0\), \(\mu>0\) and \(\sigma>0\) see pp. 432-433 of Rigby et al. (2019).
The parameterization of the Pareto Type 2 distribution in the function PARETO2
is:
$$f(y|\mu, \sigma) = \frac{1}{\sigma} \mu^{\frac{1}{\sigma}} \, (y+\mu)^{-\frac{1 }{\sigma+1}}$$
for \(y>=0\), \(\mu>0\) and \(\sigma>0\) see pp.433-434 The parameterization of the Pareto Type 1 original distribution in the function PARETO1o
is:
$$f(y|\mu, \sigma) = \frac{\sigma \mu^{\sigma}}{y^{\sigma+1}}$$
for \(y>=0\), \(\mu>0\) and \(\sigma>0\) see pp. 430-431 of Rigby et al. (2019).
Johnson, N., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions. Wiley-Interscience, NY, USA.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family
par(mfrow=c(2,2))
y<-seq(0.2,20,0.2)
plot(y, dPARETO2(y), type="l" , lwd=2)
q<-seq(0,20,0.2)
plot(q, pPARETO2(q), ylim=c(0,1), type="l", lwd=2)
p<-seq(0.0001,0.999,0.05)
plot(p, qPARETO2(p), type="l", lwd=2)
dat <- rPARETO2(100)
hist(rPARETO2(100), nclass=30)
#summary(gamlss(a~1, family="PARETO2"))
Run the code above in your browser using DataLab