Learn R Programming

gamlss.dist (version 6.1-1)

SI: The Sichel dustribution for fitting a GAMLSS model

Description

The SI() function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dSI, pSI, qSI and rSI define the density, distribution function, quantile function and random generation for the Sichel SI(), distribution.

Usage

SI(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSI(x, mu = 0.5, sigma = 0.02, nu = -0.5, log = FALSE)
pSI(q, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, 
       log.p = FALSE)
qSI(p, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, 
    log.p = FALSE, max.value = 10000)
rSI(n, mu = 0.5, sigma = 0.02, nu = -0.5)
tofyS(y, mu, sigma, nu, what = 1)

Value

Returns a gamlss.family object which can be used to fit a Sichel distribution in the gamlss() function.

Arguments

mu.link

Defines the mu.link, with "log" link as the default for the mu parameter

sigma.link

Defines the sigma.link, with "log" link as the default for the sigma parameter

nu.link

Defines the nu.link, with "identity" link as the default for the nu parameter

x

vector of (non-negative integer) quantiles

mu

vector of positive mu

sigma

vector of positive despersion parameter

nu

vector of nu

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

max.value

a constant, set to the default value of 10000 for how far the algorithm should look for q

y

the y variable. The function tofyS() should be not used on its own.

what

take values 1 or 2, for function tofyS().

Author

Akantziliotou C., Rigby, R. A., Stasinopoulos D. M. and Marco Enea

Details

The probability function of the Sichel distribution is given by $$f(y|\mu,\sigma,\nu)= \frac{\mu^y K_{y+\nu}(\alpha)}{y! (\alpha \sigma)^{y+\nu} K_\nu(\frac{1}{\sigma})}$$ where \(\alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}\), for \(y=0,1,2,...,\infty\) where \(\mu>0\) , \(\sigma>0\) and \(-\infty < \nu<\infty\) and \(K_{\lambda}(t)=\frac{1}{2}\int_0^{\infty} x^{\lambda-1} \exp\{-\frac{1}{2}t(x+x^{-1})\}dx\) is the modified Bessel function of the third kind. Note that the above parameterization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat \(\mu\), \(\alpha\) and \(\nu\) as the parameters. Note that \(\sigma=[(\mu^2+\alpha^2)^{\frac{1}{2}} -\mu ]^{-1}\). See also pp 510-511 of Rigby et al. (2019).

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \doi10.18637/jss.v023.i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")

Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. Journal of American Statistical Association, 82, 938-944.

(see also https://www.gamlss.com/).

See Also

gamlss.family, PIG, NBI, NBII

Examples

Run this code
SI()# gives information about the default links for the  Sichel distribution 
#plot the pdf using plot 
plot(function(y) dSI(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pSI(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h")   # cdf
# generate random sample
tN <- table(Ni <- rSI(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data 
# library(gamlss)
# gamlss(Ni~1,family=SI, control=gamlss.control(n.cyc=50))

Run the code above in your browser using DataLab