The SICHEL()
function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dSICHEL
, pSICHEL
, qSICHEL
and rSICHEL
define the density, distribution function, quantile function and random
generation for the Sichel SICHEL()
, distribution. The function VSICHEL
gives the variance of a fitted Sichel model.
The functions ZASICHEL()
and ZISICHEL()
are the zero adjusted (hurdle) and zero inflated versions of the Sichel distribution, respectively. That is four parameter distributions.
The functions dZASICHEL
, dZISICHEL
, pZASICHEL
,pZISICHEL
, qZASICHEL
qZISICHEL
rZASICHEL
and rZISICHEL
define the probability, cumulative, quantile and random
generation functions for the zero adjusted and zero inflated Sichel distributions, ZASICHEL()
, ZISICHEL()
, respectively.
SICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSICHEL(x, mu=1, sigma=1, nu=-0.5, log=FALSE)
pSICHEL(q, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE,
log.p = FALSE)
qSICHEL(p, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE,
log.p = FALSE, max.value = 10000)
rSICHEL(n, mu=1, sigma=1, nu=-0.5, max.value = 10000)
VSICHEL(obj)
tofySICHEL(y, mu, sigma, nu)ZASICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity",
tau.link = "logit")
dZASICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZASICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qZASICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZASICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
max.value = 10000)
ZISICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity",
tau.link = "logit")
dZISICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZISICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qZISICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZISICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
max.value = 10000)
Returns a gamlss.family
object which can be used to fit a Sichel distribution in the gamlss()
function.
Defines the mu.link
, with "log" link as the default for the mu
parameter
Defines the sigma.link
, with "log" link as the default for the sigma
parameter
Defines the nu.link
, with "identity" link as the default for the nu
parameter
Defines the tau.link
, with "logit" link as the default for the tau
parameter
vector of (non-negative integer) quantiles
vector of positive mu
vector of positive dispersion parameter sigma
vector of nu
vector of probabilities tau
vector of probabilities
vector of quantiles
number of random values to return
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
a constant, set to the default value of 10000 for how far the algorithm should look for q
a fitted Sichel gamlss model
the y variable, the tofySICHEL()
should not be used on its own.
Rigby, R. A., Stasinopoulos D. M., Akantziliotou C and Marco Enea.
The probability function of the Sichel distribution SICHEL
is given by
$$f(y|\mu,\sigma,\nu)= \frac{(\mu/b)^y K_{y+\nu}(\alpha)}{y!(\alpha \sigma)^{y+\nu} K_\nu(\frac{1}{\sigma})}$$
for \(y=0,1,2,...,\infty\), \(\mu>0\) , \(\sigma>0\) and \(-\infty <\nu<\infty\) where
$$\alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}$$
$$c=K_{\nu+1}(1/\sigma) / K_{\nu}(1/\sigma)$$ and \(K_{\lambda}(t)\) is the modified Bessel function of the third kind see pp 508-510 of Rigby et al. (2019). Note that the above parametrization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat \(\mu\), \(\alpha\) and \(\nu\) as the parameters.
The definition of the zero adjusted Sichel distribution, ZASICHEL
and the the zero inflated Sichel distribution, ZISICHEL
, are given in pp. 517-518 and pp. 519-520 of of Rigby et al. (2019), respectively.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Rigby, R. A., Stasinopoulos, D. M., & Akantziliotou, C. (2008). A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Computational Statistics & Data Analysis, 53(2), 381-393.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. Journal of American Statistical Association, 82, 938-944.
(see also https://www.gamlss.com/).
gamlss.family
, PIG
, SI
SICHEL()# gives information about the default links for the Sichel distribution
#plot the pdf using plot
plot(function(y) dSICHEL(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pSICHEL(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rSICHEL(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data
# library(gamlss)
# gamlss(Ni~1,family=SICHEL, control=gamlss.control(n.cyc=50))
Run the code above in your browser using DataLab