The function SN2()
defines the Skew Normal Type 2 distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
, sigma
and nu
. The functions dSN2
, pSN2
, qSN2
and rSN2
define the density, distribution function, quantile function and random generation for the SN2
parameterization of the Skew Normal Type 2 distribution.
SN2(mu.link = "identity", sigma.link = "log", nu.link = "log")
dSN2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pSN2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qSN2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rSN2(n, mu = 0, sigma = 1, nu = 2)
returns a gamlss.family object which can be used to fit a Skew Normal Type 2 distribution in the gamlss()
function.
Defines the mu.link
, with "`identity"' links the default for the mu parameter
Defines the sigma.link
, with "`log"' as the default for the sigma parameter
Defines the nu.link
, with "`log"' as the default for the sigma parameter
vector of quantiles
vector of location parameter values
vector of scale parameter values
vector of scale parameter values
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x]
vector of probabilities
number of observations. If length(n) > 1
, the length is taken to be the number required
Mikis Stasinopoulos, Bob Rigby and Fiona McElduff.
The parameterization of the Skew Normal Type 2 distribution in the function SN2
is
$$f(y|\mu,\sigma,\nu)=\frac{c}{\sigma}\exp\left[\frac{1}{2} (\nu z)^2\right]$$ if \(y<\mu\)
$$f(y|\mu,\sigma,\nu)=\frac{c}{\sigma}\exp\left[\frac{1}{2} (\frac{z}{\nu})^2\right]$$ if \(y\ge\mu\)
for \((-\infty<y<+\infty)\), \((-\infty<\mu<+\infty)\), \(\sigma>0\) and \(\nu>0\) where \(z=(y-\mu)/ \sigma\) and \(c=\sqrt{2} \nu /\left[ \sqrt{\pi}(1+\nu^2) \right]\) see pp. 380-381 of Rigby et al. (2019).
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family
par(mfrow=c(2,2))
y<-seq(-3,3,0.2)
plot(y, dSN2(y), type="l" , lwd=2)
q<-seq(-3,3,0.2)
plot(q, pSN2(q), ylim=c(0,1), type="l", lwd=2)
p<-seq(0.0001,0.999,0.05)
plot(p, qSN2(p), type="l", lwd=2)
dat <- rSN2(100)
hist(rSN2(100), nclass=30)
Run the code above in your browser using DataLab