Learn R Programming

gamlss.dist (version 6.1-1)

ZABI: Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS

Description

The ZABI() function defines the zero adjusted binomial distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZABI, pZABI, qZABI and rZABI define the density, distribution function, quantile function and random generation for the zero adjusted binomial, ZABI(), distribution.

The ZIBI() function defines the zero inflated binomial distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIBI, pZIBI, qZIBI and rZIBI define the density, distribution function, quantile function and random generation for the zero inflated binomial, ZIBI(), distribution.

Usage

ZABI(mu.link = "logit", sigma.link = "logit")
dZABI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE)
pZABI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZABI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZABI(n, bd = 1, mu = 0.5, sigma = 0.1)

ZIBI(mu.link = "logit", sigma.link = "logit") dZIBI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE) pZIBI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIBI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIBI(n, bd = 1, mu = 0.5, sigma = 0.1)

Value

The functions ZABI and ZIBI return a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Arguments

mu.link

Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

sigma.link

Defines the sigma.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

x

vector of (non-negative integer) quantiles

mu

vector of positive probabilities

sigma

vector of positive probabilities

bd

vector of binomial denominators

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Author

Mikis Stasinopoulos, Bob Rigby

Details

The definition of the zero adjusted binomial distribution, ZABI and the the zero inflated binomial distribution, ZIBI, are given in p. 526 and p. 527 of of Rigby et al. (2019), respectively.

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")

(see also https://www.gamlss.com/).

See Also

gamlss.family, BI

Examples

Run this code
ZABI() 
curve(dZABI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZABI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')

ZIBI() 
curve(dZIBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZIBI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')

Run the code above in your browser using DataLab