Learn R Programming

gamlss.dist (version 6.1-1)

ZANBI: Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model

Description

The function ZINBI defines the zero inflated negative binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZINBI, pZINBI, qZINBI and rZINBI define the density, distribution function, quantile function and random generation for the zero inflated negative binomial, ZINBI(), distribution.

The function ZANBI defines the zero adjusted negative binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZANBI, pZANBI, qZANBI and rZANBI define the density, distribution function, quantile function and random generation for the zero inflated negative binomial, ZANBI(), distribution.

Usage

ZINBI(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZINBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZINBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZINBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rZINBI(n, mu = 1, sigma = 1, nu = 0.3)
ZANBI(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZANBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZANBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZANBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rZANBI(n, mu = 1, sigma = 1, nu = 0.3)

Value

The functions ZINBI and ZANBI return a gamlss.family object which can be used to fit a zero inflated or zero adjusted Negative Binomial type I distribution respectively in the gamlss() function.

Arguments

mu.link

Defines the mu.link, with "log" link as the default for the mu parameter

sigma.link

Defines the sigma.link, with "log" link as the default for the sigma parameter

nu.link

Defines the mu.link, with "logit" link as the default for the nu parameter

x

vector of (non-negative integer) quantiles

mu

vector of positive means

sigma

vector of positive despersion parameter

nu

vector of zero probability parameter

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Author

Mikis Stasinopoulos, Bob Rigby

Details

The definition of the zero adjusted Negative Binomial type I distribution, ZANBI and the the zero inflated Negative Binomial type I distribution, ZINBI, are given in p. 512 and pp. 513-514 of of Rigby et al. (2019), respectively.

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")

(see also https://www.gamlss.com/).

See Also

gamlss.family, NBI, NBII

Examples

Run this code
ZINBI() 
ZANBI()
# creating data and plotting them 
 dat <- rZINBI(1000, mu=5, sigma=.5, nu=0.1)
   r <- barplot(table(dat), col='lightblue')
dat1 <- rZANBI(1000, mu=5, sigma=.5, nu=0.1)
   r1 <- barplot(table(dat1), col='lightblue')

Run the code above in your browser using DataLab