The function ZINBI
defines the zero inflated negative binomial distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dZINBI
, pZINBI
,
qZINBI
and rZINBI
define the
density, distribution function, quantile function
and random generation for the zero inflated negative binomial, ZINBI()
, distribution.
The function ZANBI
defines the zero adjusted negative binomial distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dZANBI
, pZANBI
,
qZANBI
and rZANBI
define the
density, distribution function, quantile function
and random generation for the zero inflated negative binomial, ZANBI()
, distribution.
ZINBI(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZINBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZINBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZINBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rZINBI(n, mu = 1, sigma = 1, nu = 0.3)
ZANBI(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZANBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZANBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZANBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rZANBI(n, mu = 1, sigma = 1, nu = 0.3)
The functions ZINBI
and ZANBI
return a gamlss.family
object which can be used to fit a
zero inflated or zero adjusted Negative Binomial type I distribution respectively in the gamlss()
function.
Defines the mu.link
, with "log" link as the default for the mu parameter
Defines the sigma.link
, with "log" link as the default for the sigma parameter
Defines the mu.link
, with "logit" link as the default for the nu parameter
vector of (non-negative integer) quantiles
vector of positive means
vector of positive despersion parameter
vector of zero probability parameter
vector of probabilities
vector of quantiles
number of random values to return
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
Mikis Stasinopoulos, Bob Rigby
The definition of the zero adjusted Negative Binomial type I distribution, ZANBI
and the the zero inflated Negative Binomial type I distribution, ZINBI
, are given in p. 512 and pp. 513-514 of of Rigby et al. (2019), respectively.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family
, NBI
, NBII
ZINBI()
ZANBI()
# creating data and plotting them
dat <- rZINBI(1000, mu=5, sigma=.5, nu=0.1)
r <- barplot(table(dat), col='lightblue')
dat1 <- rZANBI(1000, mu=5, sigma=.5, nu=0.1)
r1 <- barplot(table(dat1), col='lightblue')
Run the code above in your browser using DataLab