The function ZAP
defines the zero adjusted Poisson distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZAP
, pZAP
, qZAP
and rZAP
define the
density, distribution function, quantile function
and random generation for the inflated poisson, ZAP()
, distribution.
ZAP(mu.link = "log", sigma.link = "logit")
dZAP(x, mu = 5, sigma = 0.1, log = FALSE)
pZAP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZAP(n, mu = 5, sigma = 0.1)
The function ZAP
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
defines the mu.link
, with "log" link as the default for the mu
parameter
defines the sigma.link
, with "logit" link as the default for the sigma parameter which in this case is the probability at zero.
Other links are "probit" and "cloglog"'(complementary log-log)
vector of (non-negative integer)
vector of positive means
vector of probabilities at zero
vector of probabilities
vector of quantiles
number of random values to return
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
Mikis Stasinopoulos, Bob Rigby
Details about the zero adjusted Poison, ZAP
can be found pp 494-496 of Rigby et al. (2019).
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/)..
gamlss.family
, PO
, ZIP
, ZIP2
, ZALG
ZAP()
# creating data and plotting them
dat<-rZAP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
Run the code above in your browser using DataLab