Those functions are used in the distribution book of gamlss, see Rigby et. al 2019.
binom_1_31(family = BI, mu = c(0.1, 0.5, 0.7), bd = NULL, miny = 0,
maxy = 20, cex.axis = 1.2, cex.all = 1.5)
binom_2_33(family = BB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2),
bd = NULL, miny = 0, maxy = 10, cex.axis = 1.5,
cex.all = 1.5)
binom_3_33(family = ZIBB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2),
nu = c(0.01, 0.3), bd = NULL, miny = 0, maxy = 10,
cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"),
spacing = 0.3, legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))contR_2_12(family = "NO", mu = c(0, -1, 1), sigma = c(1, 0.5, 2),
cols=c(gray(.1),gray(.2),gray(.3)),
ltype = c(1, 2, 3), maxy = 7,
no.points = 201, y.axis.lim = 1.1,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topleft" )
contR_3_11(family = "PE", mu = 0, sigma = 1, nu = c(1, 2, 3),
cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7, no.points = 201,
ltype = c(1, 2, 3), y.axis.lim = 1.1, cex.axis = 1.5,
cex.all = 1.5, legend.cex=1, legend.x="topleft")
contR_4_13(family = "SEP3", mu = 0, sigma = 1, nu = c(0.5, 1, 2),
tau = c(1, 2, 5), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7,
no.points = 201, ltype = c(1, 2, 3),
y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topleft",
legend.where=c("left","right"))
contRplus_2_11(family = GA, mu = 1, sigma = c(0.1, 0.6, 1),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 4, no.points = 201,
y.axis.lim = 1.1, ltype = c(1, 2, 3),
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright")
contRplus_3_13(family = "BCCG", mu = 1, sigma = c(0.15, 0.2, 0.5),
nu = c(-2, 0, 4),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 4, ltype = c(1, 2, 3),
no.points = 201, y.axis.lim = 1.1,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right"))
contRplus_4_33(family = BCT, mu = 1, sigma = c(0.15, 0.2, 0.5),
nu = c(-4, 0, 2), tau = c(100, 5, 1),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 4, ltype = c(1, 2, 3),
no.points = 201, y.axis.lim = 1.1,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right"))
contR01_2_13(family = "BE", mu = c(0.2, 0.5, 0.8), sigma = c(0.2, 0.5, 0.8),
cols=c(gray(.1),gray(.2),gray(.3)),
ltype = c(1, 2, 3), maxy = 7, no.points = 201,
y.axis.lim = 1.1, maxYlim = 10,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))
contR01_4_33(family = GB1, mu = c(0.5), sigma = c(0.2, 0.5, 0.7),
nu = c(1, 2, 5), tau = c(0.5, 1, 2),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 0.999, ltype = c(1, 2, 3),
no.points = 201, y.axis.lim = 1.1,
maxYlim = 10,cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))
count_1_31(family = PO, mu = c(1, 2, 5), miny = 0, maxy = 10,
cex.axis = 1.2, cex.all = 1.5)
count_1_22(family = PO, mu = c(1, 2, 5, 10), miny = 0,
maxy = 20, cex.axis = 1.2, cex.all = 1.5)
count_2_32(family = NBI, mu = c(0.5, 1, 5), sigma = c(0.1, 2),
miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_2_32R(family = NBI, mu = c(1, 2), sigma = c(0.1, 1, 2),
miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_2_33(family = NBI, mu = c(0.1, 1, 2), sigma = c(0.5, 1, 2),
miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_3_32(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1),
nu = c(-0.5, 0.5), miny = 0, maxy = 10, cex.axis = 1.5,
cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.2,
legend.cex=1, legend.x="topright",
legend.where=c("left","right"))
count_3_33(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1, 2),
nu = c(-0.5, 0.5, 1), miny = 0, maxy = 10, cex.axis = 1.5,
cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3,
legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))
The result is a plot
a gamlss family distribution
the mu
parameter values
The sigma
parameter values
the nu
parameter values
the tau
parameter values
the binomial denominator
minimal value for the y axis
maximal value for the y axis
the size of the letters in the two axes
the overall size of all plotting characters
colours
spacing between plots
The type of lines used
the number of points in the curve
the maximum value for the y axis
the maximum permissible value for Y
the size of the legend
where in the figure to put the legend
where in the whole plot to put the legend
Mikis Stasinopoulos, Robert Rigby, Gillian Heller, Fernada De Bastiani
Th function plot different types of continuous and discrete distributions:
i) contR
: continuous distribution defined on minus infinity to plus infinity,
ii) contRplus
: continuous distribution defined from zero to plus infinity,
iii) contR01
: continuous distribution defined from zero to 1,
iv) bimom
binomial type discrete distributions,
v) count
count type discrete distributions.
The first number after the first underline in the name of the function indicates the number of parameters in the distribution. The two numbers after the second underline indicate how may rows and columns are in the plot.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family