Learn R Programming

gamlss.mx (version 6.0-1)

MX.control: The control function for gamlssMX

Description

The function sets controls for the gamlssMX function.

Usage

MX.control(cc = 1e-04, n.cyc = 200, trace = FALSE, 
        seed = NULL, plot = TRUE, sample = NULL, ...)

Value

Returns a list

Arguments

cc

convergent criterion for the EM

n.cyc

number of cycles for EM

trace

whether to print the EM iterations

seed

a number for setting the seeds for starting values

plot

whether to plot the sequence of global deviance up to convergence

sample

how large the sample to be in the starting values

...

for extra arguments

Author

Mikis Stasinopoulos and Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

Stasinopoulos M.D., Kneib T, Klein N, Mayr A, Heller GZ. (2024) Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications. Cambridge University Press.

(see also https://www.gamlss.com/).

See Also

gamlss, gamlssMX, gamlssMXfits