Learn R Programming

gamlss.mx (version 6.0-1)

dMX: Evaluate the d (pdf) and p (cdf) functions from GAMLSS mixtures

Description

The functions dMX() and pMX() can be used to evaluated the pdf (p function) and the cdf (p function) receptively from a gamlss.family mixture. The functions getpdfMX() and getpdfNP() can be used to evaluate the fitted d function at a specified observation and therefore for plotting the fitted distribution of a fitted model at this observation.

Usage

dMX(y, mu = list(mu1 = 1, mu2 = 5), sigma = list(sigma1 = 1, sigma2 = 1), 
       nu = list(nu1 = 1, nu2 = 1), tau = list(tau1 = 1, tau2 = 1), 
       pi = list(pi1 = 0.2, pi2 = 0.8), family = list(fam1 = "NO", fam2 = "NO"), 
       log = FALSE, ...)
pMX(q, mu = list(mu1 = 1, mu2 = 5), sigma = list(sigma1 = 1, sigma2 = 1), 
       nu = list(nu1 = 1, nu2 = 1), tau = list(tau1 = 1, tau2 = 1), 
       pi = list(pi1 = 0.2, pi2 = 0.8), family = list(fam1 = "NO", fam2 = "NO"), 
       log = FALSE, ...)
getpdfMX(object = NULL, observation = 1)
getpdfNP(object = NULL, observation = 1)

Value

Returns values or pdf or cdf.

Arguments

y,q

vector of quantiles

mu

a vector of mu's

sigma

a vector of sigma's

nu

a vector of nu's

tau

a vector of tau's

pi

a vector of pi's

family

a vector of GAMLSS family's

log

whether the log of the function or not

object

a fitted gamlssMX object

observation

the observation number in which we want to plot the fitted mixture

...

for extra arguments

Author

Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

Stasinopoulos M.D., Kneib T, Klein N, Mayr A, Heller GZ. (2024) Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications. Cambridge University Press.

(see also https://www.gamlss.com/).

Examples

Run this code
fyNO<-dMX(y=seq(0,3,.01), mu=list(1.253, 0.1876), sigma=list(exp(-0.6665 ), exp(-2.573 )),
                  pi=list(0.4079609, 0.5920391 ), family=list("NO","NO") )
plot(fyNO~seq(0,3,.01), type="l")                  
FyNO<-pMX(q=seq(0,3,.01), mu=list(1.253, 0.1876), sigma=list(exp(-0.6665 ), exp(-2.573 )),
                  pi=list(0.4079609, 0.5920391 ), family=list("NO","NO") )
plot(FyNO~seq(0,3,.01), type="l")  

Run the code above in your browser using DataLab