Learn R Programming

gamlss.spatial (version 3.0-2)

gamlss.spatial-package: tools:::Rd_package_title("gamlss.spatial")

Description

tools:::Rd_package_description("gamlss.spatial")

Arguments

Author

tools:::Rd_package_author("gamlss.spatial")

Maintainer: tools:::Rd_package_maintainer("gamlss.spatial")

Details

The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("gamlss.spatial") tools:::Rd_package_indices("gamlss.spatial")

References

De Bastiani, F. Rigby, R. A., Stasinopoulos, D. M., Cysneiros, A. H. M. A. and Uribe-Opazo, M. A. (2016) Gaussian Markov random spatial models in GAMLSS. Journal of Applied Statistics, pp 1-19.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Rue and Held (2005) Gaussian markov random fields: theory and applications, Chapman & Hall, USA.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

(see also https://www.gamlss.com/).

Examples

Run this code
library(mgcv)
data(columb)
data(columb.polys)
m1 <- MRFA(columb$crime, columb$district, polys=columb.polys)
draw.polys(columb.polys, m1) 

Run the code above in your browser using DataLab