Learn R Programming

gamlss.tr (version 5.1-9)

gamlss.tr-package: tools:::Rd_package_title("gamlss.tr")

Description

tools:::Rd_package_description("gamlss.tr")

Arguments

Author

tools:::Rd_package_author("gamlss.tr")

Maintainer: tools:::Rd_package_maintainer("gamlss.tr")

Details

The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("gamlss.tr") tools:::Rd_package_indices("gamlss.tr")

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

(see also https://www.gamlss.com/).

Examples

Run this code
# generating a t-distribution from 0 to 100  	
gen.trun(par=c(0,100),family="TF", name="0to100", type="both")
op<-par(mfrow=c(2,2))
plot(function(x) dTF0to100(x, mu=80 ,sigma=20, nu=5), 0, 100, ylab="pdf")
plot(function(x) pTF0to100(x, mu=80 ,sigma=20, nu=5), 0, 100, ylab="cdf")
plot(function(x) qTF0to100(x, mu=80 ,sigma=20, nu=5), 0.01, .999, ylab="invcdf")
hist(s1<-rTF0to100(1000, mu=80 ,sigma=20, nu=5), ylab="hist", xlab="x", main="generated data")
par(op)

Run the code above in your browser using DataLab