#------------------------------------------------------------------------------------------
# continuous distribution
# left truncation
test1<-trun.d(par=c(0), family="TF", type="left")
test1(1)
dTF(1)/(1-pTF(0))
if(abs(test1(1)-(dTF(1)/pTF(0)))>0.00001) stop("error in left trucation")
test1(1, log=TRUE)
log(dTF(1)/(1-pTF(0)))
if(abs(test1(1, log=TRUE)-log(dTF(1)/pTF(0)))>0.00001)
stop("error in left trucation")
integrate(function(x) test1(x, mu=-2, sigma=1, nu=1),0,Inf)
# the pdf is defined even with negative mu
integrate(function(x) test1(x, mu=0, sigma=10, nu=1),0,Inf)
integrate(function(x) test1(x, mu=5, sigma=5, nu=10),0,Inf)
plot(function(x) test1(x, mu=-3, sigma=1, nu=1),0,10)
plot(function(x) test1(x, mu=3, sigma=5, nu=10),0,10)
#----------------------------------------------------------------------------------------
# right truncation
test2<-trun.d(par=c(10), family="BCT", type="right")
test2(1)
dBCT(1)/(pBCT(10))
#if(abs(test2(1)-(dBCT(1)/pBCT(10)))>0.00001) stop("error in right trucation")
test2(1, log=TRUE)
log(dBCT(1)/(pBCT(10)))
if(abs(test2(1, log=TRUE)-log(dBCT(1)/(pBCT(10))))>0.00001)
stop("error in right trucation")
integrate(function(x) test2(x, mu=2, sigma=1, nu=1),0,10)
integrate(function(x) test2(x, mu=2, sigma=.1, nu=1),0,10)
integrate(function(x) test2(x, mu=2, sigma=.1, nu=10),0,10)
plot(function(x) test2(x, mu=2, sigma=.1, nu=1),0,10)
plot(function(x) test2(x, mu=2, sigma=1, nu=1),0,10)
#-----------------------------------------------------------------------------------------
# both left and right truncation
test3<-trun.d(par=c(-3,3), family="TF", type="both")
test3(0)
dTF(0)/(pTF(3)-pTF(-3))
if(abs(test3(0)-dTF(0)/(pTF(3)-pTF(-3)))>0.00001)
stop("error in right trucation")
test3(0, log=TRUE)
log(dTF(0)/(pTF(3)-pTF(-3)))
if(abs(test3(0, log=TRUE)-log(dTF(0)/(pTF(3)-pTF(-3))))>0.00001)
stop("error in both trucation")
plot(function(x) test3(x, mu=0, sigma=1, nu=1),-3,3)
integrate(function(x) test3(x, mu=2, sigma=1, nu=1),-3,3)
#-----------------------------------------------------------------------------------------
# discrete distribution
# left
# Poisson truncated at zero means zero is excluded
test4<-trun.d(par=c(0), family="PO", type="left")
test4(1)
dPO(1)/(1-pPO(0))
if(abs(test4(1)-dPO(1)/(1-pPO(0)))>0.00001) stop("error in left trucation")
test4(1, log=TRUE)
log(dPO(1)/(1-pPO(0)))
if(abs(test4(1, log=TRUE)-log(dPO(1)/(1-pPO(0))))>0.00001)
stop("error in left trucation")
sum(test4(x=1:20, mu=2)) #
sum(test4(x=1:200, mu=80)) #
plot(function(x) test4(x, mu=20), from=1, to=51, n=50+1, type="h") # pdf
# right
# right truncated at 10 means 10 is excluded
test5<-trun.d(par=c(10), family="NBI", type="right")
test5(2)
dNBI(2)/(pNBI(9))
if(abs(test5(1)-dNBI(1)/(pNBI(9)))>0.00001) stop("error in right trucation")
test5(1, log=TRUE)
log(dNBI(1)/(pNBI(9)))
if(abs(test5(1, log=TRUE)-log(dNBI(1)/(pNBI(9))))>0.00001) stop("error in right trucation")
sum(test5(x=0:9, mu=2, sigma=2)) #
sum(test5(x=0:9, mu=300, sigma=5)) # can have mu > parameter
plot(function(x) test5(x, mu=20, sigma=3), from=0, to=9, n=10, type="h") # pdf
plot(function(x) test5(x, mu=300, sigma=5), from=0, to=9, n=10, type="h") # pdf
#----------------------------------------------------------------------------------------
# both
test6<-trun.d(par=c(0,10), family="NBI", type="both")
test6(2)
dNBI(2)/(pNBI(9)-pNBI(0))
if(abs(test6(2)-dNBI(2)/(pNBI(9)-pNBI(0)))>0.00001)
stop("error in right trucation")
test6(1, log=TRUE)
log(dNBI(1)/(pNBI(9)-pNBI(0)))
if(abs(test6(1, log=TRUE)-log(dNBI(1)/(pNBI(9)-pNBI(0))))>0.00001)
stop("error in right trucation")
sum(test6(x=1:9, mu=2, sigma=2)) #
sum(test6(x=1:9, mu=100, sigma=5)) # can have mu > parameter
plot(function(x) test6(x, mu=20, sigma=3), from=1, to=9, n=9, type="h") # pdf
plot(function(x) test6(x, mu=300, sigma=.4), from=1, to=9, n=9, type="h") # pdf
#------------------------------------------------------------------------------------------
# now try when the trucated points varies for each observarion
# this will be appropriate for regression models only
# continuous
#----------------------------------------------------------------------------------------
# left truncation
test7<-trun.d(par=c(0,1,2), family="TF", type="left", varying=TRUE)
test7(c(1,2,3))
dTF(c(1,2,3))/(1-pTF(c(0,1,2)))
test7(c(1,2,3), log=TRUE)
#----------------------------------------------------------------------------------------
# right truncation
test8<-trun.d(par=c(10,11,12), family="BCT", type="right", varying=TRUE)
test8(c(1,2,3))
dBCT(c(1,2,3))/(pBCT(c(10,11,12)))
test8(c(1,2,3), log=TRUE)
#----------------------------------------------------------------------------------------
# both left and right truncation
test9<-trun.d(par=cbind(c(0,1,2),c(10,11,12) ), family="TF", type="both",
varying=TRUE)
test9(c(1,2,3))
dTF(c(1,2,3))/ (pTF(c(10,11,12))-pTF(c(0,1,2)))
test3(c(1,2,3), log=TRUE)
#----------------------------------------------------------------------------------------
# discrete
# left
test10<-trun.d(par=c(0,1,2), family="PO", type="left", varying=TRUE)
test10(c(1,2,3))
dPO(c(1,2,3))/(1-pPO(c(0,1,2)))
# right
test11<-trun.d(par=c(10,11,12), family="NBI", type="right", varying=TRUE)
test11(c(1,2,3))
dNBI(c(1,2,3))/pNBI(c(9,10,11))
# both
test12<-trun.d(par=rbind(c(0,10), c(1,11), c(2,12)), family="NBI", type="both", varying=TRUE)
test12(c(2,3,4))
dNBI(c(2,3,4))/(pNBI(c(9,10,11))-pNBI(c(0,1,2)))
Run the code above in your browser using DataLab