lpred
is the GAMLSS specific method which extracts the linear predictor and its (approximate) standard errors
for a specified parameter from a GAMLSS objects.
The lpred
can be also used to extract the fitted values (with its approximate standard errors) or specific terms in the model
(with its approximate standard errors) in the same way that the predict.lm()
and predict.glm()
functions can be used for
lm
or glm
objects.
The function lp
extract only the linear predictor. If prediction is required for new data values then use the
function predict.gamlss()
.
lpred(obj, what = c("mu", "sigma", "nu", "tau"), parameter= NULL,
type = c("link", "response", "terms"),
terms = NULL, se.fit = FALSE, ...)
lp(obj, what = c("mu", "sigma", "nu", "tau"), parameter= NULL, ... )
a GAMLSS fitted model
which distribution parameter is required, default what="mu"
equivalent to what
type="link"
(the default) gets the linear predictor for the specified distribution parameter.
type="response"
gets the fitted values for the parameter while type="terms"
gets the fitted terms contribution
if type="terms"
, which terms to be selected (default is all terms)
if TRUE the approximate standard errors of the appropriate type are extracted
for extra arguments
If se.fit=FALSE
a vector (or a matrix) of the appropriate type
is extracted from the GAMLSS object for the given parameter in what
.
If se.fit=TRUE
a list containing the appropriate type
, fit
, and its (approximate) standard errors, se.fit
.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also http://www.gamlss.org/).
# NOT RUN {
data(aids)
mod<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
mod.t <- lpred(mod, type = "terms", terms= "qrt")
mod.t
mod.lp <- lp(mod)
mod.lp
rm(mod, mod.t,mod.lp)
# }
Run the code above in your browser using DataLab