# NOT RUN {
data(usair)
# -----------------------------------------------------------------------------
# null model
mod0<-gamlss(y~1, data=usair, family=GA)
# all the explanatotory variables x1:x6 fitted linearly
mod1<-gamlss(y~., data=usair, family=GA)
#-------------------------------------------------------------------------------
# droping terms
dropterm(mod1)
# with chi-square information
drop1(mod1)
# for parallel computations use something like
nC <- detectCores()
drop1(mod1, parallel="snow", ncpus=nC)
drop1(mod1, parallel="multicore", ncpus=nC)
#------------------------------------------------------------------------------
# adding terms
addterm(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"),sep="")))
# with chi-square information
add1(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"),sep="")))
# for parallel computations
nC <- detectCores()
add1(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"),sep="")), parallel="snow", ncpus=nC)
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# stepGAIC
# find the best subset for the mu
mod2 <- stepGAIC(mod1)
mod2$anova
#--------------------------------------------------------------
# for parallel computations
mod21 <- stepGAIC(mod1, , parallel="snow", ncpus=nC)
#--------------------------------------------------------------
# find the best subset for sigma
mod3<-stepGAIC(mod2, what="sigma", scope=~x1+x2+x3+x4+x5+x6)
mod3$anova
#--------------------------------------------------------------
# find the best model using pb() smoother
#only three variables are used here for simplicity
mod20<-stepGAIC(mod0, scope=list(lower=~1, upper=~pb(x1)+pb(x2)+pb(x5)))
edf(mod20)
# note that x1 and x2 enter linearly
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# the stepGAIC.CH function (no parallel here)
# creating a scope from the usair model frame
gs<-gamlss.scope(model.frame(y~x1+x2+x3+x4+x5+x6, data=usair))
gs
mod5<-stepGAIC.CH(mod0,gs)
mod5$anova
#-----------------------------------------------------------------------------=-
#------------------------------------------------------------------------------
# now stepGAICAll.A
mod7<-stepGAICAll.A(mod0, scope=list(lower=~1,upper=~x1+x2+x3+x4+x5+x6))
#-----------------------------------------------------------------------------=-
#------------------------------------------------------------------------------
# now stepGAICAll.B
drop1All(mod1, parallel="snow", ncpus=nC)
add1All(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"))), parallel="snow", ncpus=nC)
mod8<-stepGAICAll.B(mod0, scope=list(lower=~1,upper=~x1+x2+x3+x4+x5+x6))
#-----------------------------------------------------------------------------=-
#------------------------------------------------------------------------------
# }
Run the code above in your browser using DataLab