Learn R Programming

gamlss (version 5.4-12)

glim.control: Auxiliary for Controlling the inner algorithm in a GAMLSS Fitting

Description

Auxiliary function used for the inner iteration of gamlss algorithm. Typically only used when calling gamlss function through the option i.control.

Usage

glim.control(cc = 0.001, cyc = 50,  glm.trace = FALSE, 
             bf.cyc = 30, bf.tol = 0.001, bf.trace = FALSE, 
             ...)

Value

A list with the arguments as components

Arguments

cc

the convergence criterion for the algorithm

cyc

the number of cycles of the algorithm

glm.trace

whether to print at each iteration (TRUE) or not (FALSE)

bf.cyc

the number of cycles of the backfitting algorithm

bf.tol

the convergence criterion (tolerance level) for the backfitting algorithm

bf.trace

whether to print at each iteration (TRUE) or not (FALSE, the default)

...

for extra arguments

Author

Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

(see also https://www.gamlss.com/).

See Also

gamlss

Examples

Run this code
data(aids)
con<-glim.control(glm.trace=TRUE)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids, i.control=con) # 
rm(h,con)

Run the code above in your browser using DataLab