The function lpred()
is the GAMLSS specific method which extracts the linear predictor and its (approximate) standard errors
for a specified model parameter from a GAMLSS objects.
The lpred()
can be used to extract the predictor fitted values (and its approximate standard errors) or the contribution of specific terms in the model
(with their approximate standard errors) in the same way that the predict.lm()
and predict.glm()
functions can be used for
lm
or glm
objects.
Note that lpred()
extract information for the predictors of mu
,sigma
, nu
and tau
at the training data values. If predictions are required for new data then use the
functions predict.gamlss()
or predictAll()
.
The function lp
extract only the linear predictor at the training data values.
lpred(obj, what = c("mu", "sigma", "nu", "tau"), parameter= NULL,
type = c("link", "response", "terms"),
terms = NULL, se.fit = FALSE, ...)
lp(obj, what = c("mu", "sigma", "nu", "tau"), parameter= NULL, ... )
If se.fit=FALSE
a vector (or a matrix) of the appropriate type
is extracted from the GAMLSS object for the given parameter in what
.
If se.fit=TRUE
a list containing the appropriate type
, fit
, and its (approximate) standard errors, se.fit
.
a GAMLSS fitted model
which distribution parameter is required, default what="mu"
equivalent to what
type="link"
(the default) gets the linear predictor for the specified distribution parameter.
type="response"
gets the fitted values for the parameter while type="terms"
gets the fitted terms contribution
if type="terms"
, which terms to be selected (default is all terms)
if TRUE the approximate standard errors of the appropriate type are extracted
for extra arguments
Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
predict.gamlss
data(aids)
mod<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
mod.t <- lpred(mod, type = "terms", terms= "qrt")
mod.t
mod.lp <- lp(mod)
mod.lp
rm(mod, mod.t,mod.lp)
Run the code above in your browser using DataLab