# NOT RUN {
### with kinship
# library(kinship)
# fam <- with(l51,makefamid(id,fid,mid))
# s <-with(l51, makekinship(fam, id, fid, mid))
# K <- as.matrix(s)*2
### with gap
s <- kin.morgan(l51)
K <- with(s,kin.matrix*2)
prior <- list(R=list(V=1, nu=0.002), G=list(G1=list(V=1, nu=0.002)))
m <- MCMCgrm(qt~1,prior,l51,K)
save(m,file="l51.m")
pdf("l51.pdf")
plot(m)
dev.off()
# A real analysis on bats
## data
bianfu.GRM <- read.table("bianfu.GRM.txt", header = TRUE)
bianfu.GRM[1:5,1:6]
Data <- read.table(file = "PHONE.txt", header = TRUE,
colClasses=c(rep("factor",3),rep("numeric",7)))
## MCMCgrm
library("MCMCglmm")
GRM <- as.matrix(bianfu.GRM[,-1])
colnames(GRM) <- rownames(GRM) <- bianfu.GRM[,1]
library(gap)
names(Data)[1] <- "id"
prior <- list(G = list(G1 = list(V = 1, nu = 0.002)), R = list(V = 1, nu = 0.002))
model1.1 <- MCMCgrm(WEIGTHT ~ 1, prior, Data, GRM, n.burnin=100, n.iter=1000, verbose=FALSE)
## an alternative
names(Data)[1] <- "animal"
N <- nrow(Data)
i <- rep(1:N, rep(N, N))
j <- rep(1:N, N)
s <- Matrix::spMatrix(N, N, i, j, as.vector(GRM))
Ginv <- Matrix::solve(s)
class(Ginv) <- "dgCMatrix"
rownames(Ginv) <- Ginv@Dimnames[[1]] <- with(Data, animal)
model1.2 <- MCMCglmm(WEIGTHT ~ 1, random= ~ animal, data = Data,
ginverse=list(animal=Ginv), prior = prior, burnin=100, nitt=1000, verbose=FALSE)
## without missing data
model1.3 <- MCMCglmm(Peak_Freq ~ WEIGTHT, random = ~ animal,
data=subset(Data,!is.na(Peak_Freq)&!is.na(WEIGTHT)),
ginverse=list(animal=Ginv), prior = prior, burnin=100, nitt=1000, verbose=FALSE)
# }
Run the code above in your browser using DataLab