# NOT RUN {
options(width=120)
require(gap.datasets)
mhtdata <- within(mhtdata, {z=qnorm(p/2, lower.tail=FALSE)})
mhtplot.trunc(mhtdata, chr = "chr", bp = "pos", z = "z", snp = "rsn",
y.brk1=10, y.brk2=12, mtext.line=2.5)
# https://portals.broadinstitute.org/collaboration/
# giant/images/0/0f/Meta-analysis_Locke_et_al+UKBiobank_2018.txt.gz
gz <- gzfile("work/Meta-analysis_Locke_et_al+UKBiobank_2018_UPDATED.txt.gz")
BMI <- within(read.delim(gz,as.is=TRUE), {Z <- BETA/SE})
print(subset(BMI[c("CHR","POS","SNP","P")],CHR!=16 & P<=1e-150))
library(Rmpfr)
print(within(subset(BMI, P==0, select=c(CHR,POS,SNP,Z)),
{P <- format(2*pnorm(mpfr(abs(Z),100),lower.tail=FALSE));
Pvalue <- pvalue(Z); log10P <- -log10p(Z)}))
png("BMI.png", res=300, units="in", width=9, height=6)
par(oma=c(0,0,0,0), mar=c(5,6.5,1,1))
mhtplot.trunc(BMI, chr="CHR", bp="POS", z="Z", snp="SNP",
suggestiveline=FALSE, genomewideline=-log10(1e-8),
cex.mtext=1.2, cex.text=1.2,
annotatelog10P=156, annotateTop = FALSE,
highlight=c("rs13021737","rs17817449","rs6567160"),
mtext.line=3, y.brk1=200, y.brk2=280, cex.axis=1.2, cex.y=1.2, cex=0.5,
y.ax.space=20,
col = c("blue4", "skyblue")
)
dev.off()
# }
Run the code above in your browser using DataLab