# NOT RUN {
## OPG as a positive control in our pGWAS
require(gap.datasets)
data(OPG)
p <- reshape::rename(OPGtbl, c(Chromosome="Chrom", Position="End"))
chrs <- with(p, unique(Chrom))
for(chr in chrs)
{
ps <- subset(p[c("Chrom","End","MarkerName","Effect","StdErr")], Chrom==chr)
row.names(ps) <- 1:nrow(ps)
sentinels(ps, "OPG", 1)
}
subset(OPGrsid,MarkerName=="chr8:120081031_C_T")
subset(OPGrsid,MarkerName=="chr17:26694861_A_G")
## log(P)
p <- within(p, {logp <- log(P.value)})
for(chr in chrs)
{
ps <- subset(p[c("Chrom","End","MarkerName","logp")], Chrom==chr)
row.names(ps) <- 1:nrow(ps)
sentinels(ps, "OPG", 1, log_p="logp")
}
## to obtain variance explained
tbl <- within(OPGtbl, chi2n <- (Effect/StdErr)^2/N)
s <- with(tbl, aggregate(chi2n,list(prot),sum))
names(s) <- c("prot", "h2")
sd <- with(tbl, aggregate(chi2n,list(prot),sd))
names(sd) <- c("p1","sd")
m <- with(tbl, aggregate(chi2n,list(prot),length))
names(m) <- c("p2","m")
h2 <- cbind(s,sd,m)
ord <- with(h2, order(h2))
sink("h2.dat")
print(h2[ord, c("prot","h2","sd","m")], row.names=FALSE)
sink()
png("h2.png", res=300, units="in", width=12, height=8)
np <- nrow(h2)
with(h2[ord,], {
plot(h2, cex=0.4, pch=16, xaxt="n", xlab="protein", ylab=expression(h^2))
xtick <- seq(1, np, by=1)
axis(side=1, at=xtick, labels = FALSE)
text(x=xtick, par("usr")[3],labels = prot, srt = 75, pos = 1, xpd = TRUE, cex=0.5)
})
dev.off()
write.csv(tbl,file="INF1.csv",quote=FALSE,row.names=FALSE)
# }
Run the code above in your browser using DataLab