Learn R Programming

gap (version 1.5-1)

hwe.hardy: Hardy-Weinberg equilibrium test using MCMC

Description

Hardy-Weinberg equilibrium test by MCMC

Usage

hwe.hardy(a, alleles = 3, seed = 3000, sample = c(1000, 1000, 5000))

Value

The returned value is a list containing:

method

Hardy-Weinberg equilibrium test using MCMC

data.name

name of used data if x is given

p.value

Monte Carlo p value

p.value.se

standard error of Monte Carlo p value

switches

percentage of switches (partial, full and altogether)

Arguments

a

an array containing the genotype counts, as integer.

alleles

number of allele at the locus, greater than or equal to 3, as integer.

seed

pseudo-random number seed, as integer.

sample

optional, parameters for MCMC containing number of chunks, size of a chunk and burn-in steps, as integer.

Author

Sun-Wei Guo, Jing Hua Zhao, Gregor Gorjanc

References

Guo, S.-W. and E. A. Thompson (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 48:361--372.

See Also

hwe, HWE.test, genotype

Examples

Run this code
if (FALSE) {
 # example 2 from hwe.doc:
   a<-c(
   3,
   4, 2,
   2, 2, 2,
   3, 3, 2, 1,
   0, 1, 0, 0, 0,
   0, 0, 0, 0, 0, 1,
   0, 0, 1, 0, 0, 0, 0,
   0, 0, 0, 2, 1, 0, 0, 0)
   ex2 <- hwe.hardy(a=a,alleles=8)

   # example using HLA
   data(hla)
   x <- hla[,3:4]
   y <- pgc(x,handle.miss=0,with.id=1)
   n.alleles <- max(x,na.rm=TRUE)
   z <- vector("numeric",n.alleles*(n.alleles+1)/2)
   z[y$idsave] <- y$wt
   hwe.hardy(a=z,alleles=n.alleles)

   # with use of class 'genotype'
   # this is to be fixed
   library(genetics)
   hlagen <- genotype(a1=x$DQR.a1, a2=x$DQR.a2,
                      alleles=sort(unique(c(x$DQR.a1, x$DQR.a2))))
   hwe.hardy(hlagen)

   # comparison with hwe
   hwe(z,data.type="count")

   # to create input file for HARDY
   print.tri<-function (xx,n) {
       cat(n,"\n")
       for(i in 1:n) {
           for(j in 1:i) {
               cat(xx[i,j]," ")
           }
       cat("\n")
       }
       cat("100 170 1000\n")
   }
   xx<-matrix(0,n.alleles,n.alleles)
   xxx<-lower.tri(xx,diag=TRUE)
   xx[xxx]<-z
   sink("z.dat")
   print.tri(xx,n.alleles)
   sink()
   # now call as: hwe z.dat z.out
}

Run the code above in your browser using DataLab