Learn R Programming

gap (version 1.6)

asplot: Regional association plot

Description

Regional association plot

Usage

asplot(
  locus,
  map,
  genes,
  flanking = 1000,
  best.pval = NULL,
  sf = c(4, 4),
  logpmax = 10,
  pch = 21
)

Arguments

locus

Data frame with columns c("CHR", "POS", "NAME", "PVAL", "RSQR") containing association results.

map

Genetic map, i.e, c("POS","THETA","DIST").

genes

Gene annotation with columns c("START", "STOP", "STRAND", "GENE").

flanking

Flanking length.

best.pval

Best p value for the locus of interest.

sf

scale factors for p values and recombination rates, smaller values are necessary for gene dense regions.

logpmax

Maximum value for -log10(p).

pch

Plotting character for the SNPs to be highlighted, e.g., 21 and 23 refer to circle and diamond.

Author

Paul de Bakker, Jing Hua Zhao, Shengxu Li

Details

This function obtains regional association plot for a particular locus, based on the information about recombinatino rates, linkage disequilibria between the SNP of interest and neighbouring ones, and single-point association tests p values.

Note that the best p value is not necessarily within locus in the original design.

References

saxena07gap

Examples

Run this code
if (FALSE) {
require(gap.datasets)
asplot(CDKNlocus, CDKNmap, CDKNgenes)
title("CDKN2A/CDKN2B Region")
asplot(CDKNlocus, CDKNmap, CDKNgenes, best.pval=5.4e-8, sf=c(3,6))

## NCBI2R

options(stringsAsFactors=FALSE)
p <- with(CDKNlocus,data.frame(SNP=NAME,PVAL))
hit <- subset(p,PVAL==min(PVAL,na.rm=TRUE))$SNP

library(NCBI2R)
# LD under build 36
chr_pos <- GetSNPInfo(with(p,SNP))[c("chr","chrpos")]
l <- with(chr_pos,min(as.numeric(chrpos),na.rm=TRUE))
u <- with(chr_pos,max(as.numeric(chrpos),na.rm=TRUE))
LD <- with(chr_pos,GetLDInfo(unique(chr),l,u))
# We have complaints; a possibility is to get around with 
# https://ftp.ncbi.nlm.nih.gov/hapmap/
hit_LD <- subset(LD,SNPA==hit)
hit_LD <- within(hit_LD,{RSQR=r2})
info <- GetSNPInfo(p$SNP)
haldane <- function(x) 0.5*(1-exp(-2*x))
locus <- with(info, data.frame(CHR=chr,POS=chrpos,NAME=marker,
                    DIST=(chrpos-min(chrpos))/1000000,
                    THETA=haldane((chrpos-min(chrpos))/100000000)))
locus <- merge.data.frame(locus,hit_LD,by.x="NAME",by.y="SNPB",all=TRUE)
locus <- merge.data.frame(locus,p,by.x="NAME",by.y="SNP",all=TRUE)
locus <- subset(locus,!is.na(POS))
ann <- AnnotateSNPList(p$SNP)
genes <- with(ann,data.frame(ID=locusID,CLASS=fxn_class,PATH=pathways,
                             START=GeneLowPoint,STOP=GeneHighPoint,
                             STRAND=ori,GENE=genesymbol,BUILD=build,CYTO=cyto))
attach(genes)
ugenes <- unique(GENE)
ustart <- as.vector(as.table(by(START,GENE,min))[ugenes])
ustop <- as.vector(as.table(by(STOP,GENE,max))[ugenes])
ustrand <- as.vector(as.table(by(as.character(STRAND),GENE,max))[ugenes])
detach(genes)
genes <- data.frame(START=ustart,STOP=ustop,STRAND=ustrand,GENE=ugenes)
genes <- subset(genes,START!=0)
rm(l,u,ugenes,ustart,ustop,ustrand)
# Assume we have the latest map as in CDKNmap
asplot(locus,CDKNmap,genes)
}

Run the code above in your browser using DataLab