# fit an elastic net penalized logistic regression with lambda2 = 1 for the
# L2 penalty. Use the logistic loss as the cross validation prediction loss.
# Use five-fold CV to choose the optimal lambda for the L1 penalty.
data(FHT)
set.seed(2011)
cv=cv.gcdnet(FHT$x, FHT$y, method ="logit", lambda2 = 1,
pred.loss="loss", nfolds=5)
plot(cv)
Run the code above in your browser using DataLab