## tabular data
# start with the southwest data table
head(southwest)
sppData <- southwest[, c(1,2,13,14)]
envTab <- southwest[, c(2:ncol(southwest))]
#########table type 1
## site-species table without coordinates
testData1a <- reshape2::dcast(sppData, site~species)
##site-species table with coordinates
coords <- unique(sppData[, 2:ncol(sppData)])
testData1b <- merge(testData1a, coords, by="site")
## site-species, table-table
exFormat1a <- formatsitepair(testData1a, 1, siteColumn="site", XColumn="Long",
YColumn="Lat", predData=envTab)
#' # next, let's try environmental raster data
## not run
# rastFile <- system.file("./extdata/swBioclims.grd", package="gdm")
# envRast <- terra::rast(rastFile)
## site-species, table-raster
## not run
# exFormat1b <- formatsitepair(testData1b, 1, siteColumn="site", XColumn="Long",
# YColumn="Lat", predData=envRast)
#########table type 2
## site xy spp list, table-table
exFormat2a <- formatsitepair(sppData, 2, XColumn="Long", YColumn="Lat",
sppColumn="species", siteColumn="site", predData=envTab)
## site xy spp list, table-raster
## not run
# exFormat2b <- formatsitepair(sppData, 2, XColumn="Long", YColumn="Lat",
# sppColumn="species", siteColumn="site", predData=envRast)
#########table type 3
## It is possible to format a site-pair table by starting
# with a pre-calculated matrix of biological distances
dim(gdmDissim) # pairwise distance matrix + 1 column for site IDs
gdmDissim[1:5, 1:5]
# now we can format the table:
exFormat3 <- formatsitepair(gdmDissim, 3, XColumn="Long", YColumn="Lat",
predData=envTab, siteColumn="site")
#########table type 4
## adds a predictor matrix to an existing site-pair table, in this case,
## predData needs to be provided, but is not actually used
exFormat4 <- formatsitepair(exFormat2a, 4, predData=envTab, siteColumn="site",
distPreds=list(as.matrix(gdmDissim)))
Run the code above in your browser using DataLab