Creates a standard covariance model (cmodStd
)
object for geostatistical data. This function will be
deprecated in the future. Please update your code to use
the cmod_std
function, which also
allows the user to specify geometric anisotropy.
cmod.std(model, psill, r, evar = 0, fvar = 0, par3 = 0.5)
A covariance model (e.g.,
"exponential"
). See Details for the complete
list of choices.
The partial sill of the model. Must be a positive number.
The range parameter r
. Must be a
positive number.
The variance of the errors. Must be non-negative number. The default is 0.
The finescale variance (microscale error). Must be a non-negative number. The default is 0.
The value of the third parameter for 3 parameter models. Must be a positive number. The default is 0.5.
Returns a cmodStd
object.
The general form of the specified covariance function is
psill
* \(\rho\)(d
; r
) +
(evar
+ fvar
)*(d==0
), where
\(\rho\) is the covariance function of the parametric
models.
For the exponential
model, \(\rho\)(d
;
r
) is exp(-d
/r
).
For the gaussian
model, \(\rho\)(d
;
r
) is exp(-d^2
/r^2
).
For the matern
model, \(\rho\)(d
;
r
) is
2^(1-par3
)/gamma
(par3
)*sd
^par3
*besselK(sd,
nu = par3)
, where sd = d/r
.
For the amatern
(alternative Matern) model,
\(\rho\)(d
; r
) is
2^(1-par3)/gamma(par3)*sd^par3*besselK(sd, nu =
par3)
, where sd = 2 * sqrt(par3) * d/r
.
For the spherical
model, \(\rho\)(d
;
r
) is 1 - 1.5*sd + 0.5*(sd)^3
if d <
r
, and 0 otherwise, with sd = d/r
.
For the wendland1
model, \(\rho\)(d
;
r
) is (1 - sd)^4 * (4*sd + 1)
if d <
r
, and 0 otherwise, with sd = d/r
.
For the wendland2
model, \(\rho\)(d
;
r
) is (1 - sd)^6 * (35*sd^2 + 18*sd + 3))/3
if d < r
, and 0 otherwise, with sd = d/r
.
For the wu1
model, \(\rho\)(d
; r
)
is (1 - sd)^3 * (1 + 3*sd + sd^2)
if d < r
,
and 0 otherwise, with sd = d/r
.
For the wu2
model, \(\rho\)(d
; r
)
is (1 - sd)^4*(4 + 16*sd + 12*sd^2 + 3*sd^3))/4
if
d < r
, and 0 otherwise, with sd = d/r
.
For the wu3
model, \(\rho\)(d
; r
)
is (1 - sd)^6 * (1 + 6*sd + 41/3*sd^2 + 12*sd^3 +
5*sd^4 + 5/6*sd^5)
if d < r
, and 0 otherwise,
with sd = d/r
.
Waller, L. A., & Gotway, C. A. (2004). Applied Spatial Statistics for Public Health Data. John Wiley & Sons.
# NOT RUN {
cmod.std(model = "exponential", psill = 1, r = 1)
# }
Run the code above in your browser using DataLab