Learn R Programming

generalCorr (version 1.2.6)

kern: Kernel regression with options for residuals and gradients.

Description

Function to run kernel regression with options for residuals and gradients asssuming no missing data.

Usage

kern(dep.y, reg.x, tol = 0.1, ftol = 0.1, gradients = FALSE, residuals = FALSE)

Value

Creates a model object `mod' containing the entire kernel regression output. Type names(mod) to reveal the variety of outputs produced by `npreg' of the `np' package. The user can access all of them at will by using the dollar notation of R.

Arguments

dep.y

Data on the dependent (response) variable

reg.x

Data on the regressor (stimulus) variables

tol

Tolerance on the position of located minima of the cross-validation function (default =0.1)

ftol

Fractional tolerance on the value of cross validation function evaluated at local minima (default =0.1)

gradients

Make this TRUE if gradients computations are desired

residuals

Make this TRUE if residuals are desired

Author

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, tools:::Rd_expr_doi("10.1080/03610918.2015.1122048")

See Also

See kern_ctrl.

Examples

Run this code

if (FALSE) {
set.seed(34);x=matrix(sample(1:600)[1:50],ncol=2)
require(np); options(np.messages=FALSE)
k1=kern(x[,1],x[,2])
print(k1$R2) #prints the R square of the kernel regression
}

Run the code above in your browser using DataLab